(3.237.20.246) 您好!臺灣時間:2021/04/16 07:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳義雄
研究生(外文):Yi-Hsiung Chen
論文名稱:錫銀3.5覆晶銲錫凸塊電遷移研究
論文名稱(外文):Electromigration Studies of SnAg3.5 Flip Chip Solder Bumps
指導教授:陳智陳智引用關係
指導教授(外文):Chih Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
中文關鍵詞:電遷移錫銀覆晶無鉛銲錫
外文關鍵詞:electromigrationSnAgflip-chiplead-free solder
相關次數:
  • 被引用被引用:0
  • 點閱點閱:192
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在微電子構裝工業中,近來因為環境保護的考量,所以使得無鉛銲錫逐漸地取代傳統的有鉛銲錫。而目前無鉛銲錫的種類有很多,各有各的優缺點,並沒有一種可以完全取代錫鉛銲錫的無鉛銲錫。現在被最多人研究的無鉛銲錫當屬錫銀銅系統,而本論文則選擇和錫銀銅相當接近且也相當多人探討的錫銀系統。
我們準備覆晶試片來研究電遷移現象。在本論文中我們使用兩種不同的電流密度,高電流密度是1x104A/cm2另一個則是低電流密度5x103A/cm2 。電遷移實驗在150℃下進行。通電產生的極性效應被發現:在高電流密度下,多數試片的電遷移損壞發生在銲錫凸塊的陽極/晶片端。由於電遷移而產生在陽極的金屬化合物(Ni, Cu)3Sn所導致壞在凸塊陽極/晶片端的新破壞機制也被發現。在不同的電流密度下,破壞的機制也不相同。在高電流密度下,凸塊的陽極/晶片端和陰極/晶片端都會發生破壞。在低電流密度下,只有凸塊的陰極/晶片端會發生破壞,破壞的原因是由於鋁原子的電遷移。

Lead-free solders replaced traditional SnPb solders gradually due to the call for environmental protection. So far, many kinds of lead-free solders are proposed. Each of them has its unique properties. None of them could replace tin-lead solders completely. However, one of the promising lead-free solder systems is Sn96.5/Ag3.5.
Flip-chip solder bumps were prepared for the testing of electromigration effect. Two current densities were chosen to stress the bumps in this thesis, one is 1x104A/cm2 and the other is 5x103A/cm2. The electromigration testing was performed at 150℃. Polarity effect during current stressing was found: most of the electromigration damage was found on the chip/anode side under high current density. New failure mode which caused by current-induced (Ni, Cu)3Sn4 IMCs formation in the chip/anode side was found. For the two current densities, the failure modes are different. Under high current density, both the chip/anode side and the chip/cathode side were damaged after the current stressing. Under low current density, only the chip/cathode side failed due to the electromigration of Al trace.

Contents
摘要 I
ABSTRACT II
誌謝 III
CONTENTS IV
FIGURE CAPTION VI
LIST OF TABLES X
CHAPTER 1 INTRODUCTION 1
1.1 Flip Chip Tecnology 1
1.2 Introduction of Lead-Free Solder 6
1.3 Theory of Electromigration 16
1.4 Mean Time to Failure 20
CHAPTER 2 EXPERIMENTAL PROCEDURES 21
2.1 Fabrication of Flip Chip Solder Bumps 21
2.2 Condition of Applied Currents 29
2.3 Analysis Techniques 30
2.4 Treatment of Flip Chip Samples 31
CHAPTER 3 EXPERIMENTAL RESULTS 32
3.1 Microstructure of Bumps without Current Stressing 32
3.1.1 CROSS SECTION VIEW OF FLIP-CHIP SNAG BUMPS 32
3.1.2 PLAN VIEW OF THE FLIP-CHIP SNAG BUMPS ON CHIP SIDE 34
3.2 Microstructure of Bumps Current Stressed at 150℃ under the Current Density of 1×104A/cm2 41
3.2.1 CROSS-SECTIONAL VIEW OF FLIP-CHIP SNAG BUMPS 41
3.2.2 PLAN VIEW OF FLIP-CHIP SNAG BUMPS ON CHIP SIDE 49
3.2.3 PLAN VIEW OF FLIP-CHIP SNAG BUMPS ON BOARD SIDE 54
3.3 Microstructure of Bumps Stressed under the Current Density of 5×103A/cm2 at 150℃ 57
3.3.1 CROSS SECTION VIEW OF FLIP-CHIP SNAG BUMPS 57
3.3.2 PLAN VIEW OF FLIP-CHIP SNAG BUMPS ON CHIP SIDE 61
3.3.3 PLAN VIEW OF FLIP-CHIP SNAG BUMPS ON BOARD SIDE 64
CHAPTER 4 DISCUSSION 66
4.1 Polarity Effect under Current Density 1×104A/cm2 66
4.2 Polarity Effect under Current Density 5×103A/cm2 67
4.3 Thermal Effect 68
4.4 Failure Mode under Different Current Densities 70
CHAPTER 5 CONCLUSIONS 72
REFERENCES 73

References
[1] National Technology Roadmap for semiconductors: Technology Needs, 1997 ed.
[2] A. S. Zuruzi, C.-h. Chiu, W. T. Chen, S.K.Lahiri, and K. N. Tu, “Interdiffusion of high-Sn/high-Pb (SnPb) solders in low-temperature flip chip joints during reflow,” Appl. Phys. Lett.75,23,3635-3637(1999)
[3] K.N. Tu, K Zeng, “Tin-lead (SnPb) solder reaction in flip chip technology,” Materials Science and Engineering R Reports, Vol 34, Issue
[4] J. Cannis, "Green IC packaging", Advanced Packag., No. 8, 2001, 33-38.
[5] see website "lead-free.org/legislation".
[6] see website "www.nemi.org/PbFreePUBLIC".
[7] M. Abtew and G. Selvaduray, "Lead-free Solders in Microelectronics", Mater. Sci. Eng. Report 27 (5-6) (2000) 95-141.
[8] M. Hansen and K. Anderko, "Constitution of Binary Alloys", 2nd ed., Genium Publishing Co., New York , 1958.
[9] K. N. Tu and D. Turnbull, "Direct observation of twinning in tin lamellae", Acta Metall. 18 (8) (1970) 915-929.
[10] Z. Mei, M. Kaufmann, A. Eslambolchi, and P. Johnson, "Brittle interfacial fracture of PBGA packages soldered on electroless nickel/immersion gold", in Proc. "48th Electronic Components and Technology Conference", 25-28 May 1998, Seattle, Washington, USA, IEEE, Piscataway, USA, 1998, pp. 952-961.
[11] T. Y. Lee, W. J. Choi, K. N. Tu, J. W. Jang, S. M. Kuo, J. K. Lin, D. R. Frear, K. Zeng, and J. K. Kivilahti, "Morphology, kinetics, and thermodynamics of solid state aging of eutectic SnPb and Pb-free solders (Sn3.5Ag, Sn3.8Ag0.7Cu, and Sn0.7Cu) on Cu", to be published (2001)
[12] K. N. Tu, "Irreversible processes of spontaneous whisker growth in bimetallic Cu-Sn thin-film reactions", Phys. Rev. B 49 (3) (1994) 2030-2034.
[13] Y. Kariya, C. Gagg, and W. J. Plumbridge, "Tin pest in lead-free solders", Sold. Surf. Mount Technol. 13 (1) (2001) 39-40.
[14] T. M. Korhonen and J. Kivilahti, "Thermodynamics of the Sn-In-Ag solder system", J. Electr. Mater. 27 (3) (1998) 149-158.
[15] J. Glazer, "Metallurgy of low temperature lead-free solders for electronic assembly", Int. Mater. Rev. 40 (2) (1995) 65-93.
[16] F. Hua and J. Glazer, "Lead-free solders for electronic assembly", in Proc. "Design and Reliability of Solders and Solder Interconnections", 10-13 Feb. 1997, Orlando, Florida, USA, TMS/AIME, Warrendale, USA, 1997, pp. 65-73.
[17] J. S. Hwang, "Overview of lead-free solders for electronics and microelectronics", in Proc. "Surface Mount International Conference and Exposition", 28 Aug.-1 Sept. 1994, San Jose, CA, USA, Surface Mount Int., Edina, MN, USA, 1994, pp. 405-421.
[18] K. Suganuma, "Advances in lead-free electronics soldering", Current Opinion Solid State Mater. Sci. 5 (1) (2001) 55-64.
[19] J. H. Vincent and G. Humpston, "Lead-free solders for electronic assembly", GEC J. Res. 11 (2) (1994) 76-89.
[20] I. Anderson, "Sn-Ag-Cu: A lead-free solder for board applications", in Proc. "NEPCON West '96", 27-29 Feb. 1996, Anaheim, CA, USA, Reed Exhibition, Norwalk, CT, USA, 2, 1996, pp. 882-887.
[21] C. M. Miller, I. E. Anderson, and J. F. Smith, "A viable Sn-Pb solder substitute: Sn-Ag-Cu", J. Electr. Mater. 23 (7) (1994) 595-601.
[22] Y. Kariya and M. Otsuka, "Mechanical Fatigue Characteristics of Sn-3.5Ag-X (X = Bi, Cu, Zn and In) Solder Alloys", J. Electr. Mater. 27 (11) (1998) 1229-1235.
[23] D. R. Frear, "The mechanical behavior of interconnect materials for electronic packaging", JOM 48 (5) (1996) 49-53.
[24] W. Peng, "Lead free electronic assembly based on Sn-Ag-Cu solders", Licentiate Thesis, Helsinki University of technology, Helsinki, Finland, 2001.
[25] M. E. Loomans and M. E. Fine, "Tin-Silver-Copper Eutectic Temperature and Composition", Metall. Mater. Trans. 31A (4) (2000) 1155-1162.
[26] K.-W. Moon, W. J. Boettinger, U. R. Kattner, F. S. Biancaniello, and C. A. Handwerker, "Experimental and thermodynamic assessment of Sn-Ag-Cu solder alloys", J. Electr. Mater. 29 (10) (2000) 1122-1136.
[27] H. B. Huntington and A.R. Grone, “Current-Induced Masker Motion in Gold Wires,” J. Phy. & Chem. Solids, 20, 76 (1961).
[28] K. N. Tu, J. W. Mayer and L.C. Feldman, “Electronic Thin Film Science,” Macmillan, New York (1992).
[29] I. A. Blech, "Electromigration in thin aluminium films on titanium nitride", J. Appl. Phys. 47 (4) (1976) 1203-1208.
[30] K. N. Tu, "Electromigration in stressed thin films", Phys. Rev. B 45 (3) (1992) 1409-1413.
[31] K. N. Tu and L. M. Brown “Grain boundary electromigration and creep”, Materials Chemistry and Physics, 32 (1992) 49-55.
[32] K. N. Tu ”Cu/Sn interfacial reactions: thin-film case verse bulk case”Materials Chemistry and physics 46 (1996) 217~223.
[33] Q. T. Huynh, C. Y. Liu, Chih Chen and K. N. Tu, “ Electromigration in Eutectic PbSn solder stressed between Cu Electrodes,” J. Apply .Phys. 89, 4332-4335 (2001).
[34] T. Y. Lee and K. N. Tu, “Electromigration of eutectic SnPb and SnAg3.8Cu0.7 flip chip solder bumps and under-bump metallization.” J. Appl. Phys. 9 (90) (2001) 4502-4508.
[35] A. Khosla and H. B. Huntington, “ Electromigration in Tin Single Crystals” J. Phys. Chem. Solids. Vol 36, (1975) pp. 395-399.
[36] H. M. Breitling and R. E. Hummel, “ Electromigration in Thin Silver, Cooper, Gold, Indium, Tin, Lead and Magnesium Films “ Phys. Chem. Solids, Vol. 33, (1972) pp. 845-852.
[37] J. R. Black, Proc. of IEEE, 57, 1587 (1969).
[38] M. Shatzkes and J. R. Lloyd, J. Appl. Phys., 59, 3890 (1986).
[39] K. N. Tu, A. M. Gusak, and M. Li, “Physis and Materials Challenges for Lead-free Solder”, Journal of Applied Physics, 93 (3), pp. 1335-1353, 2003.
[40] K. Zeng and K. N. Tu , “Reliability Issues of Pb-free Solder Joints in Electronic Packaging Technology”,. J. Mater. Res. (2002).
[41] K. N. Tu, “Recent Advances on Electromigration in Very Large Scale Integration of Interconnects”, will be published in 2003.
[42] T. L. Shao, K.C. Lin, and Chih Chen, “Electromigration Studies of Flip Chip Sn95/Sb5 Solder Bumps on Cr/Cr-Cu/Cu UBM”, will be published in 2003.
[43] 謝宗雍,陳力俊,電子構裝技術,微電子材料與製程,中國材料科學學會,民89

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔