跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/13 12:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:簡明雁
研究生(外文):Ming-Yen Chain
論文名稱:微波電漿化學氣相沉積之奈米碳粒鑑定
論文名稱(外文):Characterization of carbon nanoparticles prepared by microwave plasma chemical vapor deposition
指導教授:張立張立引用關係潘扶民
指導教授(外文):Li ChangFu-Ming Pan
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:84
中文關鍵詞:奈米碳粒微波電漿化學氣相沉積電子場發射
外文關鍵詞:carbon nanoparticlesmicrowave plasma chemical vapor depositionelectron field emission
相關次數:
  • 被引用被引用:0
  • 點閱點閱:199
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
本論文的架構主要可以分為兩個部分,一為電漿製程部分,主要是利用微波電漿化學氣相沉積(MPCVD)系統合成奈米碳粒。二為結構與性質分析部分,利用掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、電子繞射(Electron Diffraction)、歐傑電子能譜儀(AES)和I-V電性量測,對奈米碳粒做結構與性質的分析。
首先,利用濺鍍法(sputtering)在鐵、鈷和鎳三種觸媒鍍在矽基材上,厚度分別為30 nm、10 nm和30 nm,接著藉由MPCVD系統在氫氣與甲烷的氣氛下合成出奈米碳粒。由SEM與TEM的分析結果,發現奈米碳粒為外面包覆著石墨層,裡面填充金屬的結構。不同觸媒成長之奈米碳粒有不同的粒徑分布,鐵觸媒奈米碳粒粒徑分布大約是100 nm到140 nm,鈷觸媒奈米碳粒粒徑分布大約是80 nm到100 nm,鎳觸媒奈米碳粒粒徑分布大約是40 nm到50 nm。從TEM與AES可以分析出填充在奈米碳粒內的觸媒為純金屬的低溫相。經由實驗中對於奈米碳粒的觀察以及對奈米碳粒所做的分析,探討奈米碳粒在微波電漿化學氣相沉積系統可能的成長機制。
從I-V電性量測的結果可以得知,鐵觸媒以及鈷觸媒成長之奈米碳粒都具有場發射的特性,驅動電場分別為1.35 V/μm以及1.5 V/μm,而且分別在電場為1.73 V/μm以及1.93 V/μm時,電流密度可達1 mA/cm2。

Carbon nanoparticles (CNPs) were successfully prepared in an ASTeX microwave plasma chemical vapor deposition (MPCVD) system. The morphology structure and composition of CNPs were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Auger electron spectroscopy (AES), respectively. The current-voltage (I-V) characteristics of CNPs were measured using a vacuum diode system consisting of a cathode and an anode (ITO glass) both mounted in a vacuum chamber of a pressure about 10-6 torr for field emission property measurement.
Fe, Co and Ni films deposited on silicon substrate by sputtering were used as catalysts for growing the CNPs. CNPs have been synthesized using the precursor gases of methane and hydrogen. The results examined by SEM and TEM show that the structure of CNPs is a metallic nanoparticle covered with graphitic layers. The size of CNPs ranges from 100-140 nm, 80-100 nm, 40-50 nm for Fe, Co, and Ni catalysts, respectively. The metallic nanoparticles filled in CNPs were the stable phase at low temperature of pure metal according to the TEM and AES analysis. In this work, the mechanism of CNPs growth is also addressed.
The turn-on field of CNPs using Fe as catalyst is 1.35 V/μm, and that using Co as catalyst is 1.5 V/μm. For the CNPs using Fe as catalyst, the electrical field required for an emission current density of 1 mA/cm2 is 1.73 V/μm. For the CNPs using Co as catalyst, the electrical field required for an emission current density of 1 mA/cm2 is 1.93 V/μm.

第一章 緒論............................................1
第二章 文獻回顧........................................5
2-1碳奈米材料結構及其性質.............................5
2-1-1奈米碳管.....................................7
2-1-2奈米碳線.....................................13
2-1-3奈米碳粒......................................15
2-2奈米碳粒之合成方法.................................19
2-2-1電弧放電法....................................19
2-2-2觸媒式化學氣相沉積........................... 21
2-3奈米碳粒的相關應用.................................23
2-3-1場發射電子元件................................23
2-3-2磁紀錄材料....................................24
2-3-3磁性材料......................................25
2-3-4放射性廢料的處理..............................25
第三章 利用微波輔助化學氣相沉積系統在低溫成長奈米碳粒..26
3-1前言...............................................26
3-2實驗步驟...........................................27
3-2-1基板的製備....................................27
3-2-2以鐵為觸媒製備奈米碳粒........................28
3-2-3以鈷為觸媒製備奈米碳粒........................29
3-2-4以鎳為觸媒製備奈米碳粒........................29
3-2-5分析方法......................................30
第四章 奈米碳粒結構與性質之鑑定........................34
4-1鐵觸媒奈米碳粒.....................................34
4-1-1 SEM形貌......................................34
4-1-2 AES分析......................................35
4-1-3 TEM分析......................................36
4-2鈷觸媒奈米碳粒.....................................42
4-2-1 SEM形貌......................................42
4-2-2 AES分析......................................43
4-2-3 TEM分析......................................44
4-3鎳觸媒奈米碳粒.....................................50
4-3-1 SEM形貌......................................50
4-3-2 AES分析......................................51
4-3-3 TEM分析......................................52
4-4結果與討論.........................................58
4-5奈米碳粒之成長機制.................................59
4-6電子場發射性質........................................62
第五章 總結論與未來展望................................69
參考文獻.................................................72

參考文獻
1.http://cohesion.rice.edu/CentersAndInst/CNST/emplibrary/
Plenary
2.http://www.thirteen.org/bucky/dome.html
3.H. W. Kroto, J. R Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature, 318, 162, 1985.
4.W. Kratschmer, L. D. Lamb, K. Fostiropoulos, D. R. Huffman, "Solid C60: a new form of carbon ", Nature, 347, 354, 1990.
5.R. C. Haddon, A. F. Hebard, M. J. Rosseinsky, D. W. Murhy , S. J. Duclos, K. B. Lyons, B. Miller, J. M. Rosamilia, R. M. Fleming, A. R. Kortan, S. H. Glarum, A. V. Makhija, A. J. Muller, R. H. Eick, S. M. Zahurak, R. Tycko, G. Dabbagh, F. A. Thiel, "Conducting films of C60 and C70 by alkali metal doping", Nature, 350, 320, 1991.
6.S. Iijima, "Helical microtubules of graphitic carbon", Nature, 354, 56, 1991.
7.A. Oberlin, M. Endo, T. Koyama, "High resolution electron microscope observations of graphitized carbon fibers", Carbon, 14, 133,1976.
8.L. E. Brus, "Luminescence of Silicon Materials: Chains, Sheets, Nanocrystals, Nanowires, Microcrystals, and Porous Silicon", J. Phys. Chem., 98, 3575, 1994.
9.J. Rupp, R. Birringer, "Enhanced specific-heat-capacity (cp) measurements (150—300 K) of nanometer-sized crystalline materials", Phy.Rev.B., 36, 7888, 1987.
10.H. Gleiter, "Naonocrystalline Materials", Prog. Mater.Sci., 33, 223, 1989.
11.W. Barthlott, and C. Neinhuis, "Purity of the sacred lotus, or escape from contamination in biological surfaces" ,Planta, 202, 1, 1997.
12.K. Akamatsu, and S. Deki, "Dispersion of gold nanoparticles into a nylon 11 thin film during heat treatment:in situ optical transmission study", J. Mater. Chem., 8, 637-640, 1998.
13.S. H. Chung, Y. Wang, L. Persi, F. Croce, S. G. Greenbaum, B. Scrosati, and E. Plichta, "Enhancement of iron transport in polymer electrolytes by addition of nanoscale inorganic oxides", J. Power Sources, 97, 644-648, 2001.
14.M. H. Teng, J. J. Host, J.-H. Hwang, B. R. Elliott, J. R. Weertman, T. O. Mason, V. P. Dravid, and D. L. Johnson, "Nanophase Ni particles produced by a blown arc method", J. Mater. Res., 10, No. 2, 233-236, 1995.
15.V. P. Dravid, J. J. Host, M. H. Teng, B. R. Elliott, J.-H. Hwang, D. L. Johnson, T. O. Mason, and J. R. Weertman, "Controlled-size nanocapsules", Nature, 374, No.13, 602, 1995.
16.N. S. Xu, R. V. Latham, and Y. Tzeng, "Field-dependence of the area-density of `cold' electron emission sites on broad-area CVD diamond films", Electron. Lett. 29, 1596, 1993.
17.M. Q. D. M. Gruen, A. R. Krauss, O. Auciello, T. D. Corrigan, and R. P.H. Chang, "Studies of field emission from bias-grown diamond thin films", J. Vac. Sci. Technol. B 17, 705, 1999.
18.K. Okano, T. Yamada, H. Ishihara, S. Koizumi, and J. Itoh, "Electron emission from nitrogen-doped pyramidal-shape diamond and its battery operation", Appl. Phys. Lett. 70, 2201, 1997.
19.W. Zhu, G. P. Kochanski, and S. Jin, "Low-Field Electron Emission from Undoped Nanostructured Diamond", Science, 282, 1471, 1998.
20.K. H. Wu, E. G. Wang, J. Chen, and N. S. Xu, "Nitrogen-incorporated distorted nanocrystalline diamond films: Structure and field emission properties", J. Vac. Sci. Technol. B 17,1059, 1999.
21.H. Kiyota, et al., "Electron field emission from diamond-like carbon films deposited by electrolysis of methanol liquid", Appl. Phys. Lett. 75, 2331, 1999.
22.B. Satyanarayana, A. Hart,W. I. Milne, and J. Robertson, "Field emission from tetrahedral amorphous carbon", Appl. Phys. Lett.71, 1430, 1997.
23.W. A. de Heer, A. Chatelain, and D. Ugarte, "A Carbon Nanotube Field-Emission Electron Source", Science, 270, 1179, 1995.
24.Y. Chen, S. Patel, Y. Ye, D. T. Shaw, and L. P. Guo, "Field emission from aligned high-density graphitic nanofibers", Appl. Phys. Lett. 73, 2119, 1998.
25.Y. Chen, D. T. Shaw, and L. Guo, "Field emission of different oriented carbon nanotubes", Appl. Phys. Lett. 76, 2469, 2000.
26.C. Wang, A. Garcia, D. C. Ingram, and M. E. Kordesch, "Cold field emission from CVD diamond films observed in emission electron microscopy", Electron. Lett.27, 1459, 1991.
27.A. V. Karabutov, V. D. Frolov, S. M. Pimenov, and V. I. Konov, "Grain boundary field electron emission from CVD diamond films", DiamondRelat. Mater. 8, 763, 1999.
28.V. I. Merkulov, D. H. Lowndes, and L. R. Baylor, "Field-emission studies of smooth and nanostructured carbon films", Appl. Phys. Lett. 75, 1228, 1999.
29.B. S. Satyanarayana, J. Robertson, and W. I. Milne, "Low threshold field emission from nanoclustered carbon grown by cathodic arc", J. Appl. Phys. 87, 3126, 2000.
30.R. Saito, G. Dresselhaus & M. S. Dresselhaus, Physical Properties of Carbon Nanotube (Imperial College Press, London, p.59, 1998.
31.M. M. J. Treacy, T. W. Ebbesen and J. M. Gibson, "Exceptionally high Young,s modulus observed for individual carbon nanotubes", Nature, 381, 678, 1996.
32.http://diamond.iams.sinica.edu.tw/tamol/work/12-13.htm.(牟中原、陳家俊,奈米材料研究展望)
33.http://ojps.aip.org/journals/doc/APPLAB-ft/vol_75/iss_20/3129_1﹒html
34.http://www.research.ibm.com/nanoscience/fet.html
35.Y. H. Tang, P. Zhang, P. S. Kim, T. K. Sham, Y. F. Hu, X. H. Sun, N. B. Wong, M. K. Fung, Y. F. Zheng, C. S. Lee, and S. T. Lee, "Amorphous carbon nanowires investigated by near-edge-x-ray-absorption-fine-structures", Appl. Phys. Lett., 79, 3773, 2001.
36.H. Yokomichi, F. Sakai, M. Ichihara, and N. Kishimoto, "A determination of the electronic conductivity of aerodynamically levitated high temperature liquid metals and semiconductors by contactless methods", Journal of Non-crystalline Solids, 868, 299-302, 2002.
37.S. Botti, R. Ciardi, M. L. Terranova, S. Piccirillo, V. Sessa, and M. Rossi, "Carbon nanotubes and nanowires grown from spherical carbon nano-particles", Chemical Physics Letters, 355, 395, 2002.
38.R. L. Vander Wal, and L. J. Hall, "Flame synthesis of Fe catalyzed single-walled carbon nanotubes and Ni catalyzed nanofibers: growth mechanisms and consequences", Chemical Physics Letters, 349, 178, 2001.
39.A. V. Melechko, V. I. Merkulov, D. H. Lowndes, M. A. Guillorn, and M. L. Simpson, "Transition between `base' and `tip' carbon nanofiber growth modes", Chemical Physics Letters, 356, 527, 2002.
40.J. Han, J. Yoo, C. Y. Park, H. Kim, G. S. Park, M. Yang, I. T. Han, N. Lee, W. Yi, S. G. Yu, and J. M. Kim, "Tip growth model of carbon tubules grown on the glass substrate by plasma enhanced chemical vapor deposition", J. Appl. Phys., 91, 483, 2002.
41.S. Tomita , M. Hikita , M. Fujii , S. Hayashi, K. Yamamoto, "A new and simple method for thin graphitic coating of magnetic-metal nanoparticles", Chemical Physics Letters, 316, 361—364, 2000.
42.C. Journet﹐P. Bernier﹐"Production of carbon nanotubes", Appl. Phys., A67, 1, 1998.
43.L. C. Qin et. al. "Growing carbon nanotubes by microwave plasma-enhanced chemical vapor deposition"﹐Appl. Phys. Lett., 72﹐pp-3437∼3439, 1998.
44.I. Brodie, C. Spindt, Adv. Electron. Electron Phys., 83, 1, 1992.
45.J. A. Castellano, Handbook of Display Technology (Academic Press, San Diego), 1992.
46.A. W. Scott, Understanding Microwaves (Wiley, New York 1993).
47.K. H. Park, W. J. Seo, S. Lee, and K. H. Koh, "Triode field emitter with a gated planar carbon-nanoparticle cathode", Appl. Phys. Lett., 81, 358-360, 2002.
48.T. Hayashi, S. Hirono, M. Tomita, S. Umemura, "Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon", Nature, 381, 772, 1996.
49.X. Sun, A. Gutierrez, M. J. Yacaman, X. Dong, S. Jin, "Investigations on magnetic properties and structure for carbon encapsulated nanoparticles of Fe, Co, Ni", Material Science and Engineering, A286, 157-160, 2000.
50.T. W. Ebbesen, Carbon Nanotubes-Preparation and Properties, CRC Press, New York, 1997.
51.A. Krishnan, E. Dujardin, M. M. J. Treacy, J. Huhdahl, S. Lynum, T. W. Ebbesen, "Graphitic cones and the nucleation of curved carbon surfaces", Nature, 388, 451, 1997.
52.Y. Saito, T.Matsumoto, "Carbon nano-cages created as cubes", Nature, 392, 237, 1998
53.C. N. R. Rao, R. Seshadri, A. Govindaraj, R. Sen, "Fullerenes, nanotubes, onions and related carbon structures ", Mater. Sci. Eng. R, 15, 209, 1995.
54.R. S. Rouff, D. C. Lorents, B. Chan, R. Malhotra, S. Subramoney, "Single Crystal Metal Encapsulated in Carbon Nanoparticles", Science, 259, 346, 1993.
55.J. Jiao, S. Seraphin, "Carbon encapsulated nanoparticles of Ni, Co, Cu, and Ti", J. Appl. Phys., 83, 2442, 1998
56.P. J. F. Harris, S. C. Tsang, "A simple technique for the synthesis of filled carbon nanoparticles ", Chem. Phys. Lett., 293, 53, 1998.
57.P. J. F. Harris, S. C. Tsang, "Encapsulating uranium in carbon nanoparticles using a new technique ", Carbon, 36, 1859, 1998.
58.P. G. Lurie, J. M. Wilson, "The Diamond Surface", Surf. Sci. 65, 476, 1977.
59.I. F. Ferguson, in Auger Microscope Analysis (IOP Publishing, Bbristol, 1998), p.63.
60.Y. Saito, "Nanoaprticles and filled nanocapsules", Carbon, 33, 979-988, 1995.
61.Y. Saito, M. Okuda, T. Yoshikawa, A. Kasuya, Y. Nishina, "Correlation between Volatility of Rare-Earth Metals and Encapsulation of Their Carbides in Carbon Nanocapsules ", J. Phys. Chem., 98, 6696-6698, 1994.
62.S. A. Majetich, J. O. Artamn, M. E. McHenrry, N. T. Nuhfer, S. W. Staley, " Preparation and properties of carbon-coated magnetic nanocrystallites", Phys. Rev. B, 48, 16845, 1993.
63.http://www.lasurface.com/
64.D. A. Kirkpatrick, A. Mankofsky, K. T. Tsang, "Analysis of field emission from three-dimensional structures", Appl. Phys. Lett. , 60, 2065-2067, 1992.
65.W. Zhu, G. P. Kochanski, and S. Jin,"Electron field emission from chemical vapor deposited diamond", J. Vac. Sci. Technol. B 14, 2011, 1996.
66.N. Kumar, H. K. Schmidt, C. Xie, "Diamond-based field emission flat panel displays", Solid State Technol.38, 71, 1995.
67.S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, H. Dai , "Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties ", Science, 283, 512, 1999.
68.G. A. J. Amaratanga, S. R. P. Silva, "Nitrogen containing hydrogenated amorphous carbon for thin-film field emission cathodes", Appl. Phys. Lett. , 66, 2529-2531, 1996.
69.Wataru Seikoa, Yoichi Hoshi, Hidehiko Shimizu, "Fe and Fe—N films sputter deposited at liquid nitrogen temperature", Journal of Magnetism and Magnetic Materials, 235, 196-200, 2001.
70.Lewis T. Chadderton, Ying Chen, "A model for the growth of bamboo and skeletal nanotubes: catalytic capillarity", Journal of Crystal Growth, 240, 164-169, 2002.
71.Oleg. A. Louchev, Yoichiro Sato, Hisao Kanda, "Growth mechanism of carbon nanotube forests by chemical vapor deposition", Appl. Phys. Lett., 80, 2752-2754, 2002.
72.J. Yu, E. G. Wang, and X. D. Bai, "Electron field emission from carbon nanoparticles prepared by microwave plasma chemical vapor deposition", Appl. Phys. Lett., 78, 2226-2228, 2001.
73.A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tománek, P. Nordlander, D. T. Colbert, R. E. Smalley, " Unraveling Nanotubes: Field Emission from an Atomic Wire", Science, 269, 1550, 1993.
74.Su-Hua Yang, Meiso Yokoyama, " Enhanced field emission in modified volcano-shaped field emitter ", Material Chemistry and Physics, 51, 6-10, 1997.
75.S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, C. M. Lieber, "Covalently functionalized nanotubes as nanometre- sized probes in chemistry and biology", Nature, 394, 52, 1998.
76.A. N. Obraztsav, I. Yu. Pavlovski, A. P. Volkov, " Field electron emission in graphite-like films", Technical Physics, 46, 1437-1443, 2001.
77.R. W. Stayer, W. Mackie, L. W. Swarson, Surf. Sci., 34, 225, 1973.
78.A. N. Obraztsav, I. Yu. Pavlovski, A. P. Volkov, A. L. Chuvilin, N. A. Rudina, V. L. Kuznetsov, " Role of the curvature of atomic layers in electron field emission from graphitic nanostructured carbon", JETP Letters, 69, 411-417, 1999.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top