跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 11:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:宣家甯
研究生(外文):Chia-Ning Shuan
論文名稱:使用階層式迴歸模型預估高速公路車流量
論文名稱(外文):Estimation of Freeway Traffic Flows by Hierarchical Regression Model
指導教授:周幼珍周幼珍引用關係
指導教授(外文):Yow-Jen Jou
學位類別:碩士
校院名稱:國立交通大學
系所名稱:統計所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:29
中文關鍵詞:階層式迴歸
外文關鍵詞:Hierarchical Regression
相關次數:
  • 被引用被引用:0
  • 點閱點閱:427
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
對於那些要經常在尖峰時間使用高速公路的人而言, 避免不必要的擁擠以節省寶貴時間是相當重要的. 在本篇論文中, 我們將用一些統計的方法來分析高速公路的車流資料並且發展一種方法在高速公路各檢測器上預測短期的車流變化. 我們將使用考慮時間, 日期, 和上游車流量的hierarchical 迴歸模型. 我們用高速公路北部路段的車流量當作我們所要分析的資料.
For those who usually use Freeway at peak time period, predicting the car flows at these periods and avoiding unnecessary congestion in order to save time is important. In this thesis, we want to use statistical model to analyze the freeway flow data and develop a technique in predicting short-term flow changes on sequence of detectors in a freeway network. We use hierarchical regression model which considers time of day, day of week and upstream detector flows. The data we analyze come from Taiwan Area National Freeway Bureau.
Contents
1. Introduction 3
2. Data collection 5
2.1 Data obtaining 5
2.2 Data screening 6
2.3 Data selection 6
3. Spline function, Hierarchical regression model, and Gibbs sampler 8
3.1 Spline function 8
3.2 Hierarchical regression model 9
3.3 Gibbs sampler 13
4. Numerical results 15
5. Conclusion 19
Appendix 20
Reference 28
Anderson, T. W. (1984), An introduction to Multivariate Statistical Analysis, 2nd edition, John Wiley & Sons.
Box, G.E.P., and Tiao, G.C. (1992), Bayesian Inference in Statistical Analysis, John Wiley & Sons.
Geman, S. and Geman D. (1984), ‘Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images’, IEEE, Trans. Pat. Anal. Mach. Intel. 6, 721-741.
Gelfand, A. E., Hills, S. E., Racine-Poon, A., and Simth, A. F. M. (1990), ‘Illustration of Bayesian inference in normal data models using Gibbs sampling’, Journal of the American Statistical Association, vol. 85, 972—985.
Gilks, W. R., Roberts, G.. O., Suhu, S. K. (1998), ‘Adaptive Markov chain Monte Carlo through regeneration’, Journal of the American Statistical Association, vol. 93, 1045-1054.
Hastings, W. K. (1970), ‘Monte Carlo sampling methods using Markov chains and their applications’, Biometrika, 57, 97-109.
Lindley, D.V. and Smith, A.F.M. (1972), ‘Bayes estimates for the linear model’( with discussion ), Journal of the Royal Statistical Society, Ser. B , 34, 1-41.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E. (1953), ‘Equations of state calculations by fast computing machine’, J. Chem. Phys., 21, 1087-1091.
Seber, G. A. F. and Wild, C. J. (1989), Nonlinear Regression, 1st edition, John Wiley & Sons.
Smith, A.F.M. (1973), ‘A general Bayesian linear model’, Journal of the Royal Statistical Society, Ser. B, 35, 67-75.
Stapleton, J.H. (1995), Linear Statistical Models, 1st edition, John Wiley & Sons.
Tebaldi, C., West, M. and Karr, A.F. (2002), ‘Statistical analyses of freeway traffic flows’, International Journal of Forecasting, 21, 39 — 68.
Van Arem, B., Kirby, H. R., Van Der Vlist, M. J. M., Whittaker J. C. (1997), ‘Recent advances and applications in the field of short-term traffic forecasting’, International Journal of Forecasting, 13, 1 — 12.
West, M. and Harrison, P.J. (1997), Bayesian Forecasting and Dynamic Models, 2nd edition, Springer-Verlag: New York.
Wold, S. (1974), ‘Spline functions in data analysis’, Technometrics, 16, 1 — 11.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top