跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/22 02:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王芝峰
研究生(外文):Chih-Feng Wang
論文名稱:重複量測資料的層次變換模型
論文名稱(外文):A Transformed Hierarchical Model For Repeated Measurement Data
指導教授:陳志榮陳志榮引用關係
指導教授(外文):Chih-Rung Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:統計所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:22
中文關鍵詞:變換層次重複量測資料概似推論經驗貝氏最佳估計函數穩健性
外文關鍵詞:TransformationHierarchicalRepeated measurement dataLikelihood inferenceEmpirical BayesOptimal estimating functionRobustness
相關次數:
  • 被引用被引用:0
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
變換反應變數的技術在對非服從常態分配的資料常被頻繁地使用。首先,我們回顧三個重要的變換族群例子,他們的值域可能和整個實數線不同。在上述的情況下,我們提出一個針對重複量測資料的變換層次模型。接著,對上述的模型做有母數及半母數的推論。最後,我們也考慮穩健性的推論。
The technique of transforming the response is frequently used for modeling nonnormal data. Three important families of transformations with ranges possibly different from the real line are first reviewed. A transformed hierarchical model is proposed for repeated measurement data in such situations. Both parametric and semiparametric inferences are presented. Consideration of robustness is also discussed.
1. Introduction
2. A transformed hierarchical model
3. A parametric inference
4. A semiparametric inference
5. Summary
1. Aranda-Ordaz, F. J. (1981). On two families of transformations to additivity for binary response data. Biometrika, 68, 357-364.
2. Barndorff-Nielsen, O. E. and Cox, D. R. (1994). Inference and Asymptotics. Chapman & Hall, London.
3. Box, G. E. P. and Cox, D. R. (1964). An analysis of
transformations (with discussion). Journal of the Royal
Statistical Society, Ser. B, 26, 211-243.
4. Chen, C.-R. and Wang, L.-C. (2003). Likelihood
inference under the general response transformation model with
heteroscedastic errors. Taiwanese Journal of Mathematics, 7, 261-273.
5. Davidian, M. and Giltinan, D. M. (1995). Nonlinear Models for Repeated Measurement Data. Chapman & Hall,
London.
6. Godambe, V. P. (1999). Linear Bayes and optimal
estimation. Annals of the Institute of Statistical
Mathematics, 51, 201-215.
7. Heyde, C. C. (1997). Quasi-Likelihood and its Application: A General Approach to Optimal Parameter Estimation. Springer-Verlag, New York.
8. Johnson, N. L., Kotz, S., and Balakrishran, N. (1994). Continuous Univariate Distributions, Vol. 1, 2nd ed. John Wiley & Sons, New York.
9. Liang, K.-Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrics, 73, 13-22.
10. Manly, B. F. J. (1976). Exponential data transformations. The Statistician, 25, 37-42.
11. Prakasa Rao, B. L. S. (1999). Semimartingales and their Statistical Inference. Chapman & Hall/CRC, Boca Raton.
12. Yuan, K.-H. and Jennrich, R. I. (1998). Asymptotics of
estimating equations under natural conditions. Journal of
Multivariate Analysis, 65, 245-260.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top