跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/15 13:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林貞君
研究生(外文):Chen-Chun Lin
論文名稱:運用統計方法及影像處理計算顯微影像中結腸癌細胞凋亡之比例
論文名稱(外文):Statistical Analysis and Image Processing of Microscope Images for Apoptosis of Colon Cancer Cells
指導教授:盧鴻興盧鴻興引用關係
指導教授(外文):Horng-Shing Lu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:統計所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:52
中文關鍵詞:凋亡可見光顯微影像螢光顯微影像摺積分水嶺轉換結腸癌
外文關鍵詞:apoptosislight microscope imagefluorescent microscope imageconvolutionwatershed transformcolon cancer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
本研究的目的是運用影像處理以及統計分析方法,從結腸癌細胞的電子顯微影像中,自動化估計出自然凋亡細胞的比例。這個比例在治療癌症的體外試驗中可以提供診斷的資訊。
分水嶺轉換是對可見光的顯微影像進行初始化的分割,而無母數的檢定,例如Kolmogorov-Smirnov檢定是將鄰近相似的區域合併成一個區域的方法,這些被分割出來的區域是被用來當成訓練資料,從中獲得細胞的平均半徑以及標準差。用大小不同的濾波器做摺積的目的是偵測細胞在可見光和螢光顯微影像上的位置以及個數,再用型態學中的方法來記數細胞的個數以及比例。這些比例的信賴區間是用來評估有關臨床影像自動化檢查方法的表現成效。

This study is aimed to estimate the ratio of apoptosis cells for colon cancer automatically from microscope images with image processing and statistical analysis methods. This ratio will provide diagnosis information for cancer treatments with in vitro cells.
Watershed transform is used to obtain the initial segmentation in light microscope images. Nonparametric tests, such as the Kolmogorov-Smirnov test, will be used to merge similar regions. These segmented regions will be used as the training set to obtain the average radius of cells and their standard deviations. Based on these sizes, convolution filters will be proposed to detect the number and location of cells in both images of light and fluorescentmicroscopes. Morphology methods are used to count the number of cells and the ratio. The confidence intervals of the ratios are computed to evaluate the performance of this automatic approach with respect to expert inspection for clinical images.

Chapter 1 Introduction…………………………………………1
1.1 Motivation……………………………………………………..1
1.2 Experiments and Goals………………………………………...1
1.3 Microscope Images…………………………………………….2
1.4 Literature Reviews……………………………………………..3
1.5 Analysis Steps…………………………………………………4
Chapter 2 Generating a Training Set from the Image of Light
Microscope………………………………………….5
2.1 Watershed Transform………………………………………….5
2.1.1 Literature Review…………………………………….5
2.1.2 Immersion Simulation………………………………..5
2.1.3 Algorithm of Flooding for Immersion Simulation…...6
2.1.4 An Example of Watershed Transform in 2D…………9
2.1.5 Watershed Transforms with Thresholds…………….11
2.2 Kolmogorov-Smirnov Tests and Region Merging…………...13
2.2.1 K-S Test……………………………………………..13
2.2.2 Neighborhood Matrix……………………………….14
2.2.3 Region Merging……………………………………..15
Chapter 3 Designs of Convolution Filters for Counting Cells.17
3.1 Literature Reviews……………………………………………17
3.2 Convolution…………………………………………………..17
3.3 Convolutions for 1D Signals…………………………………19
3.4 Convolutions for 2D Images…………………………………26
Chapter 4 Estimating the Ratios of Apoptosis Cells…………33
4.1 Flowchart……………………………………………………..33
4.2 Details and Illustrations………………………………………33
Chapter 5 Empirical Studies………………………………….46
5.1 Confidence Intervals of Ratios……………………………….46
5.2 Case Studies…………………………………………………..47
Chapter 6 Conclusion and Discussion………………………..48
References……………………………………………………..50

[1] Bikhet, S. F., Darwish, A. M., Tolba, H. A., Shaheen, S. I.. (2000) “Segmentation
and Classification of White Blood Cells,” IEEE Acoustics, Speech, and Signal Processing, 4, 2259 -2261.
[2] Canny, J. F. (1986) “A computational Approach to edge Detection,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, Volume: 8, NO: 6,
679-698
[3] Casella, G., Berger, R. L. (2002), Statistical Inference, p. 454, Wadsworth,
2nd Edition.
[4] Cayley, A. (1859) “On contour and slope lines,” London, Edinburgh, Dublin
Philosoph. Mag. J. Sci., 18, 264-268.
[5] Chang, C., Chatterjee, S. (1993) “Ranging through Gabor logons-a consistent,
hierarchical approach,” IEEE Transactions on Neural Networks, Volume: 4 Issue:5,
827-843.
[6] Gauch, J. M. (1999) “Image Segmentation and Analysis via Multiscale
Gradient Watershed Hierarchies,” IEEE Transactions on Image Processing,
Volume: 8, NO.1
[7] Gonzales, R.-C., Woods, R.-E., (2002), Digital Image Processing. Prentice Hall,
2nd Edition.
[8] Haris, K., Efstratiadis, S. N., Maglaveras, N., Katsaggelos, A.K. (1988) “Hybrid
image segmentation using watershed and fast region merging,” IEEE Transactions
on Image Processing, Volume: 7, No.12, 1684-1699.
[9] Hedengren, K. (1992) “Edge Enhancement with Image Algebra,” IEEE Pattern Recognition, 390 —393.
[10] Huang, M.-Y. (2001) ”Eye Tracking Using the Most Yielding Filter,”
Master Thesis, Institute of Electrical Engineering, National Taiwan University.
[11] Kolmogorov, A. N. (1933) “Sulla determination emperical diuna legge di
distribuzione Giornale dell,” Istituto. Italiano. degli. Attuari., 483-91.
[12] Liu, H.-P. (2002) ”Interpolation by Spline with GCV and
Nonparametric Segmentation by Cell Clustering for 3D Ultrasound Images,”
Master Thesis, Institute of Statistics, National Chiao Tung University.
[13] Lu, H. H.-S., Wells, M. T., and Tiwari, R. C. (1994) “Inference for Functions in the Two-Sample Problem with Right Censored Data: With Applications,” Journal of the American Statistical Association, 89, 427, 1017-1026.
[14] Maxwell, J. C. (1870) “On hills and dales,” London, Edinburgh, Dublin
Philosoph. Mag. J. Sci, 40, 421-425.
[15] Nipon T. U., Grader, P. D., (2000) “Training Neural Networks to Count White Blood Cells via a Minimum Counting Error Objective Function,” IEEE Pattern Recognition, 2, 299 —302.
[16] Ongun, G., Halici, U., Atalay, K. V., Beksac, M., Beksac, S. (2001) “An
Automated Differential Blood Count System,” IEEE Engineering in Medicine and Biology Society, 3, 2583 —2586.
[17] Ruberto,C. D., Dempster, A., Khan ,S., Jarra, B (2000) “Segmentation of Blood
Images Using Morphological Operators,” IEEE Pattern Recognition, 3, 397 —400.
[18] Smirnov, N. (1933) “Estimate of deviation between emperical distribution
functions in two independent samples,“ Bull. Moscow Univ. 2 (2) 3-16.
[19] Smirnov, N. (1948) “Table for estimating the goodness of fit of empirical
distribution,” Ann. Math. Statist. 19 279-281.
[20] Su, P.-H. (2001) “Cell Competition: A new Approach To Extracting Multiple Objects From Ultrasound Images,” M.S. Thesis, Institute of Statistics, National Chiao Tung University.
[21] Thiran, J. P., Macq, B., Mairesse, J. (1994) “Morphological Classification of
Cancerous Cells,” IEEE Image Processing, 3, 706-10.
[22] Vincent, L., Soille. P. (1991) “Watersheds in digital spaces: an efficient
algorithm based on immersion simulations,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 13, 583-598.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top