跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/04 19:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王俊能
研究生(外文):Chung-Neng Wang
論文名稱:空間相關性在影視訊壓縮標準之應用
論文名稱(外文):空間相關性在影視訊壓縮標準之應用
指導教授:劉啟民劉啟民引用關係蔣迪豪
指導教授(外文):Chi-Min LiuTihao Chiang
學位類別:博士
校院名稱:國立交通大學
系所名稱:資訊工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:161
中文關鍵詞:影像壓縮標準視訊壓縮標準N個皇后圖樣快速動態偵測法視覺性擾動技術二重轉換技術MPEGH.264
外文關鍵詞:Image Coding StandardsVideo Coding StandardsN-Queen latticeFast Motion EstimationPerceptual DitheringDouble TransformationMPEGH.264
相關次數:
  • 被引用被引用:1
  • 點閱點閱:189
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:3
在影視訊的畫面中,小範圍內的資料數值大小之間存在相似性,意指這些資料存在空間上相關性。這空間上相關性可應用於改進,如MPEGx、H.26x、JPEG和JPEG2000等,現有的影視訊壓縮標準之效能,以使其效能最大化。因此,本論文研究與探討如何應用空間上相關性到現有的影視訊壓縮標準,以使壓縮標準的編碼效能最大化並且加速區塊配對的處理速度之目的。
在利用空間上相關性來使壓縮效能最大化方面,基於頻譜係數之間的相似圖樣(亦即這些圖樣之間存在一些編碼的多餘性),我們提出兩個新的多餘性去除的方法─統計上方法與視覺上方法。視覺上方法稱之為視覺性擾動技術,所謂的視覺性擾動(Perceptual Dithering)技術是利用人眼感官模型來去除影像資料之間編碼的多餘性。我們已證明可以利用視覺性擾動技術將原始影像轉換成另一個在肉眼上看不出差異的影像;但是轉換後的影像資料在統計上的相關性已被增加。這個增加的統計相關性可以直接被用來提升影視訊號之壓縮率。在壓縮標準中應用此視覺性擾動技術的方法,我們稱之為視覺性擾動編碼技術。本論文也舉證此視覺性擾動編碼技術在理論上與實際上對影視訊號壓縮效能有實質的改進。至於統計上方法則稱之為二重轉換(Double Transformation)技術,所謂的二重轉換技術是將影像資料經過兩次的空間到頻率之轉換,以善用空間相關性來提高壓縮效能但不需傳輸多餘的解碼資訊。我們發現只用一次轉換,對於具有紋路與物件輪廓的影像,其壓縮效能較差。其原因是影像中一小區域的資料其能量被分散在不同的高頻頻帶係數中;這樣的能量分散減低Entropy編碼模組之效能。因此,二重轉換技術可以藉由去除空間相關性並且將一區域內的資料之能量集中在較少的頻帶係數中。將輸入資料的能量集中在少數頻帶係數有助於提升Entropy編碼器的效能以改善整體編碼器之壓縮效能。經由在MPEG-4參照軟體平台上實際評量的結果,在品質相同的情況下相較於MPEG-4 Visual Texture Coding所需之位元流長度,視覺性擾動壓縮技術與二重轉換技術所能節省的位元流長度皆大於10%。
在利用空間上相關性來加速區塊配對的處理速度方面,我們藉由從每一個區塊中找到其中一部分最具代表性的像素點來作區塊差異的計算,以達到加速配對速度的目的。為了找到最具代表性的像素點,我們提出一個新的評量準則。這個評量準則已被應用於現有的像素點取樣法的效能評量。評量結果的分析,也證明了這個新準則的正確性。藉由這個準則,我們也提出一個新的所謂的「N個皇后像素點取樣法」。這個N個皇后像素點取樣法可留存區塊中之像素點在所有方向上最多的的空間特性。同時,這個新的像素點取樣法可以經由多層次的組合方式來產生適用於矩形區塊的區塊配對之取樣點。雖這個N個皇后像素點取樣法所產生的是隨機的取樣點,利用所提出的資料重組與儲存方法,仍可以很有效率地對這些取樣點作記憶體存取,並且可以用簡單硬體設計來實現基於這個取樣法的快速區塊配對演算法。同時,我們也已經在Single Instruction Multiple Data (SIMD)處理器上實現基於4個皇后的取樣法之快速動態偵測模組來驗證其硬體實現的容易性。最後,經由實際地在MPEG-4參照軟體上模擬,其結果皆證實N個皇后方法能夠在可忽略的視訊品質(用Peak-Signal-to-Noise-Ratio (PSNR)值評量)下降之下,相對於使用全部像素點做區塊比對之動態偵測演算法有N倍的加速;因此,N個皇后方法之效能優於其他現存的像素點取樣法。
The neighboring image/video source information is similar in magnitude, which means that there exists strong inter-element spatial correlation of the source material. The spatial correlation is exploited to maximize coding efficiency of the existing image/video standards including MPEG-1/2/4, H.261/2/3/4, JPEG, and JPEG2000. The spatial correlation is investigated in this dissertation to further improve the coding efficiency and to speed up the derivation of a minimal discrepant data for each block within the input data.
For maximal coding efficiency, the spatial correlation is removed by mapping the input data into spectral coefficients that are less correlated in statistical characteristics. This dissertation investigates the spectral coefficients with visually similar patterns, which indicate redundancy. To exploit such redundancy reduction, we propose novel approaches by taking the spatial correlation into account in both statistical and perceptual aspects, respectively. We show that the original image can be perceptually dithered to form a visually equivalent image with increased interband correlation that can be used to achieve higher compression. To remove the redundancy among the sibling subbands of an image, we provide a novel perceptual dithering coding (PDC) that is based on entropy reduction technique with psychovisual effects. The theoretical basis for the entropy reduction is proven by a theorem for Gaussian distribution. Our results show that there exists perceptual interband redundancy even though the original interband correlation is statistically small. Moreover, for images with significant texture and sharp contrast, the energy of the data in a local area is spread over spectral coefficients. A double transformation coding (DTC) approach is used to remove the correlation between the spectral coefficients and compact the energy to a smaller number of coefficients. For performance verification, the PDC and DTC have been evaluated on the reference software of MPEG-4 coding standard. For a perceptually transparent image quality, the PDC can achieve bit savings over MPEG-4 Visual Texture Coding (VTC) by 11~34% while maintaining compatibility with the MPEG-4 standards. For the same quality in Peak-Signal-to-Noise-Ratio (PSNR), we find that the DTC achieves bit savings over MPEG-4 VTC by about 11.28~15.71% for the finer quantizers and around 0~14.65% for the coarser quantizers.
In addition, the spatial correlation is adopted to speed up the derivation of a minimal discrepant block for each block. The speedup is based on the use of a representative subset of the data in calculating the distortion measure. To spatially sub-sample a block of pixels, we presented a novel N-Queen lattice. Although this lattice is pertinent to many applications, we present an application to speed up motion search with minimal loss of coding efficiency. The N-Queen lattice is constructed to characterize spatial features in all directions. It can be hierarchically organized for motion estimation with variable non-square block size. Despite the randomized lattice structure, we demonstrate that it’s possible to achieve compact data storage architecture for efficient memory access and simple hardware implementation. Our simulations show that the N-Queen lattice is superior to several existing sampling techniques with improvement in speed by about N times and small loss in PSNR. Based on the N-Queen lattice, we design compact data storage architecture for efficient memory access and simple hardware implementation. The 4-Queen lattice is adopted to explain the architecture implementation based on the N-Queen lattice in this dissertation.

中文摘要 III
英文摘要 IV
誌 謝 VIII
CONTENTS IX
LIST OF FIGURES XI
LIST OF TABLES XV
CHAPTER 1. INTRODUCTION 1
1.1 MOTIVATION 1
1.2 SPATIAL REDUNDANCY REDUCTION OF S/F MAPPER 3
1.3 SPATIAL PREDICTOR 18
1.4 ORGANIZATION 22
CHAPTER 2. PERCEPTUAL DITHERING CODING 24
2.1 MOTIVATION 24
2.2 PERCEPTUAL DITHERING CODING 27
2.3 ENTROPY REDUCTION OF PERCEPTUAL DITHERING APPROACH 44
2.4 EVALUATION OF PDC ON MPEG-4 VISUAL TEXTURE CODING 50
2.5 EXPERIMENTAL RESULTS 51
CHAPTER 3. DOUBLE TRANSFORMATION CODING 56
3.1 PRELIMINARIES 56
3.2 DOUBLE TRANSFORMATION FOR DWT COEFFICIENTS 59
3.3 DOUBLE TRANSFORMATION CODING 63
3.4 SIMULATION RESULTS 71
CHAPTER 4. SPATIAL PREDICTOR FOR FAST MOTION ESTIMATION 75
4.1 PRELIMINARIES 75
4.2 SELECTION OF DECIMATION LATTICES FOR BLOCK MATCHING 76
4.3 FAST MOTION ESTIMATION USING N-QUEEN DECIMATION LATTICES 81
4.4 CASE STUDY: FAST MOTION ESTIMATION USING N-QUEEN LATTICE ON A SIMD PROCESSOR 85
4.5 EXPERIMENTAL RESULTS 98
CHAPTER 5. CONCLUSION 110
BIBLIOGRAPHY 113
APPENDICES 122
A. PROOF OF LEMMA 1 122
B. PROOF OF THEOREM 1 123
C. MMX CODES FOR THE BLOCKING MATCHING USING THE FULL AND THE 4-QUEEN PATTERNS 125

[1] R. J. Clarke, “Transform coding of images, ” London, England: Academic, 1985.
[2] M. Rabbani and R. Joshi, "An overview of the JPEG2000 still image compression standard," Signal Processing: Image Communication, vol. 17, pp.3-48, 2002.
[3] C. Christopoulos, A. Skodras, and T. Ebrahimi, "JPEG2000 still image coding system: an overview," IEEE Trans. Consumer Electronics, vol.46, no.4, pp.1103-1127, Nov. 2000.
[4] MPEG Video Group, “Information technology─Coding of audio-visual objects─Part 2: Visual & Amendment 1:Visual extension,” International Standard, ISO/IEC JTC1/SC 29/WG 11 14496-2: 1999/Amd. 1:2000(E), Jan. 2000.
[5] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet coefficients,” IEEE Trans. Signal Processing, vol. 41, no. 12, pp. 3445-3462, Dec., 1993.
[6] D. Tauman and A. Zakhor, “Multirate 3-D subband coding of video,” IEEE Trans. Signal Processing, vol. 3, no. 5, pp. 572 -588, Sept. 1994.
[7] A. Said and W. A. Pearlman, “A new fast and efficient image codec based on set partitioning in hierarchical trees, ” IEEE Trans. on Circuits and Systems for Video Technology, vol. 6, no. 3, pp. 243 -250, June 1996.
[8] J. W. Woods, and S. D. O’Neil, ” Subband coding of images “, IEEE Trans. Acoustics, Speech, and Signal Processing, vol. ASSP-34, no. 5, pp. 1278-1288, Oct. 1986.
[9] S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation, “ IEEE Trans. Pattern Analysis and Machince Intelligence, vol. 11, no. 7, pp. 674-693, Jul. 1989.
[10] O. Johnsen, O. V. Shentov, and S. K. Mitra, “A technique for the efficient coding of the upper bands in subband coding of images, “ in Proc. ICASSP (Albuquerque, NM, USA), Apr. 1990, pp. 2097-2100.
[11] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using wavelet transform, “ IEEE Trans. Image Processing, vol. 1, no. 2, pp. 205-220, Apr. 1992.
[12] J. Vaisey, “Subband prediction using leakage information in image coding, “ IEEE Trans. Communications, vol. 43, no. 2/3/4, pp. 216-221, Feb./Mar./Apr. 1995.
[13] N. Mohsenian and N. M. Nasrabadi, “Edge-based subband VQ techniques for images and video,” IEEE Trans. Circuits and Systems for Video Technology, vol. 4, no. 1, pp. 53-67, Feb. 1994.
[14] M. Effros, P. Achou, and R. M. Gray, “Weighted universal image compression, ” IEEE. Trans. Image Processing, vol. 8, no. 10, Oct. 1999.
[15] M. Helsingius, P. Kuosmanen, and J. Astola, “Image compression using multiple transforms, ” Signal Processing: Image Communication, vol. 15, pp.513-529, 2000.
[16] D. Akopian, M. Helsingius, and J. Astola, “Multibase/wavelet transform coding of still images without blocking artifacts, ” 32 Asilomar Conference on Signals, Systems and Computer (1998), vol.1, pp.154-158.
[17] K. Rose, A. Heiman, and I. Dinstein, “DCT/DST alternate-transform image coding, ” IEEE Trans. Communications, vol. 38, no. 1, pp. 94 -101, Nov. 1990.
[18] J.F. Tilki and A.A. Beex, “Image data compression using multiple bases representation, ” in Proc. 26th Southeastern Symposium on System Theory, 1994, pp. 457 -461.
[19] V, K Goyal, J. Zhuang, M. Vetterli, and C. Chan, “Transform coding using adaptive bases and quantization, ” Proc. of ICIP’96, vol. 2, pp.365-368.
[20] V, K Goyal, J. Zhuang, and M. Vetterli, “Universal transform coding on backward prediction, ” in Proc. IEEE Data Compression Conference, 1997, pp.231-240.
[21] Y.-H. Chan, “An efficient weight optimization algorithm for image representation using nonorthogonal basis images, ” IEEE Signal Processing Letters, pp. 193 —195, vol. 5 no. 8 , Aug. 1998.
[22] A. Ramaswamy and W.B. Mikhael, “Development of a near lossless image compression technique using mixed transforms, ” in Proc. ISCAS, vol.2, 1995, pp. 1263 —1266.
[23] A. Ramaswamy and W.B. Mikhael, “A mixed transform approach for efficient compression of medical images, ” IEEE Trans. Medical Imaging, pp. 343 -352, vol.15, no. 3, June 1996
[24] I. Singh, P. Agathoklis, and A. Antoniou, “Image compression using a mixed-transform technique and vector quantization, ” in Proc. 1998 Int. Conference on Electronics, Circuits and Systems., vol. 3, 1998, pp. 511 -514.
[25] A. P. Berg and W.B. Mikhael, “A survey of mixed transform techniques for speech and image coding, ” in Proc. ISCAS, vol.4, 1999, pp. 106 -109.
[26] C. W. Kok, S.C. Chan, and S.H. Leung, “Image coding using DCT of wavelet coefficients, ” in Proc. 1992 Int. IEEE-SP International Symposium Time-Frequency and Time-Scale Analysis, 1992, pp. 475 —478.
[27] T.-H. Yu and S.K. Mitra, “Wavelet based hybrid image coding scheme, ” in Proc. ISCAS, vol.1, 1997, pp. 377 -380.
[28] H. Song, J. Kim, and C.-C. Jay Kuo, “Hybrid DCT/Wavelet I-frame coding for efficient H.263+ rate control at low bit rates, ” in Proc. ISCAS, vol. 4, 1998, pp. 293 —296.
[29] J. Wang, W. Zhang, and Songyu Yu, “Wavelet coding method using small block DCT, ” Electronics Letters, vol.37, no. 10, pp. 627 -629, May 2001.
[30] H. Kondo and H. Kou, “Wavelet image compression using sub-block DCT, ” in Proc. Ninth IEEE International Conference on Networks, 2001, pp. 327 -330
[31] H.S. Dee and V. Jeoti, “On image compression: a DWT-DCT algorithm, ” in Proc. Sixth International Symposium on Signal Processing and its Applications, vol.2, 2001, pp. 553 -556.
[32] Y.S. Saw and R.-H. Park, “Combined transform of DCT-WHT with two-source decomposition of interframe prediction errors generated by motion-compensated coding, ” Electronics Letters, vol.25, no. 3, pp. 214 -215, May 2001.
[33] A. Ramaswamy and W.B. Mikhael, “Multitransform/multidimensional signal representation, ” in Proc. 36th Midwest Symposium on Circuits and Systems, vol.2, 1993, pp. 1255 -1258.
[34] U.-V. Koc and K.J. Ray Liu, “Discrete-cosine/sine-transform based motion estimation, ” in Proc. ICIP-94, vol.3, 1994, pp. 771 -775.
[35] E.G. Pelaes, and Y. Iano, “Image coding using discrete sine transform with axis rotation, ” IEEE Trans. Consumer Electronics, vol. 44, no. 4, pp. 1284 -1290, Nov. 1998.
[36] A. Ramaswamy and W.B. Mikhael, “A multiple transform based scheme for still color image compression, ” in Proc. ISCAS '96, vol. 2, 1996, pp. 433 -436.
[37] E. A. B. Da Silva and M. Ghanbari, “A hybrid subband-DCT codec for transmission of high resolution still pictures at 64kbits, ” Journal of Visual Communication and Image Representation, pp. 164-177, vol.6, no. 6, June 1995.
[38] MPEG Video Group, "Report of core experiment T13: block based DCT and wavelet selective coding," ISO/IEC JTC1/SC29/WG11 MPEG96/M1470, Nov. 1996.
[39] W.B. Mikhael and A. Ramaswamy, "Constrained image representation using multi-transforms," in ISCAS94, vol. 3, 1994, pp.297-300.
[40] W.B. Mikhael and A. Ramaswamy, "Application of multitransforms for lossy image representation," IEEE Trans. Circuits Syst. II: Analog and Digital Signal Processing, pp. 431 -434, vol. 41, no. 6, June 1994.
[41] A. P. Berg and W.B. Mikhael, "An efficient structure and algorithm for image representation using nonorthogonal basis images," IEEE Trans. Circuits Syst. II: Analog and Digital Signal Processing, pp. 818 -828, vol. 44 no. 10, Oct. 1997.
[42] A. B. Watson, G. Y. Yang, A. Solomon, and J. Villasenor, “Visibility of wavelet quantization noise for wavelet image coding, ” IEEE Trans. Image Processing, vol. 6, no. 8, pp. 1164-1175, Aug. 1997.
[43] S. A. Klein, A. D. Silverstein, and T. Carney, “Relevance of human vision to JPEG-DCT compression, ”SPIE Human Vision, Visual Processing, and Digital Display II, vol.1666, pp.200-215, 1992.
[44] J. Malo, A. M. Pons, and J. M. Artigas, “Subjective image fidelity metric based on bit allocation of the human visual system in the DCT domain, ” Image and Vision Computing, vol. 15, pp. 535-548, 1997.
[45] T. Koga, K. Iinuman, A. Hirano, Y, Iijima, and T. Ishiguro, "Motion Compensated interframe coding for video conferencing," in Proc. Nat. Telecommun. Conf., New Orleans, LA, 1981, pp. G5.3.1-G5.3.5.
[46] D. Xu, C. Bailey, and R. Sotudeh, “An improved three-step search block-matching algorithm for low bit-rate video coding applications, ” in 1998 URSI International Symposium on Signals, Systems, and Electronics, 1998, pp. 178 -181.
[47] D. Xu and J. Bentley, “VLSI-based parallel architecture for block-matching motion estimation in low bit-rate video coding, ” in Proc. ICECS 2001, vol. 1, 2001, pp. 217 -220.
[48] J.-N. Kim and T.-S. hoi, “A fast three-step search algorithm with minimum checking points using unimodal error surface assumption, ” IEEE Trans. Consumer Electronics, vol. 44, no. 3, pp. 638 -648, Nov. 1998.
[49] D. Xu, J.M. Noras, and W. Booth, “A simple and efficient VLSI architecture for a very fast high performance three step search algorithm, ” IEE Colloquium on High Performance Architectures for Real-Time Image Processing, pp. 1 —6, Nov. 1998.
[50] L.-G. Chen, W.-T. Chen, Y.-S. Jehng, and T.-D. Chiueh, "A predictive parallel motion estimation algorithm for digital image processing, " in Proc. Computer Design: VLSI in Computers and Processors, 1991, pp. 617 -620.
[51] L.-G. Chen, W.-T. Chen, Y.-S. Jehng, and T.-D. Chiueh, "An efficient parallel motion estimation algorithm for digital image processing," IEEE Trans. Circuits Syst. Video Technol., pp. 378 -385, vol. 1, no. 4, Dec. 1991.
[52] H.-M. Jong, L.-G. Chen, and T.-D. Chiueh, "Parallel architectures for 3-step hierarchical search block-matching algorithm," IEEE Trans. Circuits Syst. Video Technol., pp. 407 -416, vol. 4, no. 4, Aug. 1994.
[53] R. Polmpen, Y. Hatoir, W. Geuen, J. Guichard, M. Guglielmo, and H. Brusewitz, "Motion video coding in CCITT SG XV," in Proc. Globecom88 The Video Source Coding, pp. 997 -1004, 1988.
[54] R. Li, B. Zeng, and M. L. Liou, “A new three-step search algorithm for block motion estimation, ” IEEE Trans. Circuits Syst. Video Technol., pp. 977 -983, vol.4, no. 4, Aug. 1994.
[55] A. Costa, A. De Gloria, P. Faraboschi, and F. Passaggio, "A VLSI architecture for hierarchical motion estimation," IEEE Trans. Consumer Electronics, vol. 41, no. 2, pp. 248 -257, May 1995.
[56] F.-H. Cheng and S.-N. Sun, “New fast and efficient two-step search algorithm for block motion estimation, ” IEEE Trans. Circuits Syst. Video Technol., pp. 977 -983, vol. 9, no. 7, Oct. 1999.
[57] J. Lu and M.L. Liou, “A simple and efficient search algorithm for block-matching motion estimation, ” IEEE Trans. Circuits Syst. Video Technol., pp. 429 -433, vol. 7, no. 2, April 1997.
[58] R. Srinivasan and K. R. Rao, “Predictive coding based on efficient motion estimation, ” IEEE Trans. on Communications, vol. COM-33, pp. 1011-1014, Sept. 1985.
[59] H. Nisar and T.-S. Choi, “An advanced center biased search algorithm for motion estimation, ” in Proc. ICIP-2001, vol. 1, 2001, pp. 832 -835.
[60] J. Jain and A. Jain, “Displacement measurement and its application in interframe image coding, ” IEEE Trans. Circuits Syst. Video Technol., pp. 977 -983, vol.4, no. 4, Aug. 1994.
[61] K. H.-k. Chow and M. L. Liou, “Genetic motion search algorithm for video compression, ” IEEE Trans. Circuits Syst. Video Technol., pp. 440-445, vol.3, no. 6, Dec. 1993.
[62] C. H. Lin and J. L. Wu, “A lightweight genetic block-matching algorithm for video coding, ” IEEE Trans. on Circuits and Systems for Video Technology, pp. 386-392, Aug. 1998.
[63] J. Y. Tham, S. Ranganath, M. Ranganath, and A. Kassim, “A novel unrestricted center-based Diamond search algorithm for block motion estimation, ” IEEE Trans. on Circuits and Systems for Video Technology, Vol. 8, pp. 369-377, Aug. 1998.
[64] A. M. Tourapis, O. C. Au, and M. L. Liou, “Fast Block-Matching Motion Estimation using Predictive Motion Vector Field Adaptive Search Technique (PMVFAST),” ISO/IEC JTC1/SC29/WG11 MPEG2000/M5866, Noordwijkerhout, NL, Mar. 2000.
[65] A. M. Tourapis, O. C. Au, M. L. Liou, G. Shen, and I. Ahmad, “Optimizing the MPEG-4 encoder- advanced diamond zonal search,” in Proc. 2000 Int. Sym. Circuits Syst., vol. 3, Geneva, Switzerland, May 2000, pp. 674-677.
[66] S. Zhu and K. -K. Ma, “A new diamond search algorithm for fast block-matching motion estimation,” IEEE Trans. Image Processing, pp. 287-290, vol. 9, no. 2, Feb. 2000.
[67] M.-C. Hong and Y. M. Park, “Dynamic Search Range Decision for Motion Estimation, “ ITU - Telecommunications Standardization Sector Video Coding Experts Group (VCEG), VCEG-N33.
[68] J. S. Kim and R. H. Park, “A fast feature-based block matching algorithm using integral projections, ” IEEE J. Selected Areas Commun., Vol. 10, pp. 968-971, June 1992.
[69] C. Tu , T. Tran, and P. Topiwala, “A Hybrid Feature/Image Block Motion-Vector Estimation Approach, “ ITU - Telecommunications Standardization Sector Video Coding Experts Group (VCEG), VCEG-N25.
[70] M. Bierling, “Displacement estimation by hierarchical block matching,” Proc. SPIE Conf. Visual Commun. Processing’88, vol. 1001, pp. 942-951, 1988.
[71] T. Liu, X. Zhang and D. Wang, “An improved three-step search algorithm for block motion estimation, ” in Proc. APCC/OECC '99, vol. 2, 1999, pp. 924 -926.
[72] C.-K. Cheung and L.-M. Po, "A hierarchical block matching algorithm using partial distortion measure," in ISCAS97, 1997, pp.1237-1240.
[73] J.-H. Kim and W.J. Song, "A hierarchical block matching algorithm using selective elimination of candidate motion vectors," IEICE Trans. Inf. Syst., vol.E82-D, no..5. May 1999.
[74] L. Yu, Y. Zhang, and Q.D. Yao, "Hierarchical motion estimation algorithms with especially low hardware costs," IEEE Trans. Consumer Electronics, vol. 44, no. 1, pp. 125-129, May 1998.
[75] X. Song, T. Chiang, and Y.-Q. Zhang, "A scalable hierarchical motion estimation algorithm for MPEG-2," in ISCAS98, no. 4, 1998, pp. 126-129.
[76] K. M. Nam, J.-S. Kim, R.-H. Park, and Y. S. Shim, "A fast hierarchical motion vector estimation algorithm using mean pyramid," IEEE Trans. Circuits Syst. Video Technol., pp. 344 -351, vol. 5, no. 4, Aug. 1995.
[77] P. J. Burt and E. H. Adelson, “The Palladian pyramid as a compact image code, ” IEEE Trans. on Communications, vol. COM-31, no. 4, Apr. 1983.
[78] X. Lee and Y.-Q. Zhang, “A fast hierarchical motion-compensation scheme for video coding using block feature matching, ” IEEE Trans. on Circuits and Systems for Video Technology, vol. 6, pp. 627-635, Dec. 1996.
[79] B. Natarajan, V. Bhaskaran, and K. Konstantinides, “Low-complexity block-based motion estimation via one-bit transforms, “ IEEE Trans. on Circuits and Systems for Video Technology, vol. 7, no. 4, pp. 702-706, Aug. 1997.
[80] P. H. W. Hong and O. C. Au, “Modified one-bit transform for motion estimation, ” IEEE Trans. on Circuits and Systems for Video Technology, vol. 9, no. 7, pp. 1020-1024, Oct. 1999.
[81] X. Song, T. Chiang, X. Lee, and Y.-Q. Zhang, “New fast binary pyramid motion estimation for MPEG2 and HDTV encoding, ” IEEE Trans. on Circuits and Systems for Video Technology, vol. 10, no. 7, pp.1015-1028, Oct. 2000.
[82] J.-H. Luo, C.-N. Wang, and T. Chiang, “A novel all-binary motion estimation (abme) with optimized hardware architectures, ” IEEE Trans. on Circuits and Systems for Video Technology, vol. 12, no. 8, pp.700-712, Aug. 2002.
[83] Y. Yu, J. Zhou, and C. W. Chen, “A novel fast block motion estimation algorithm based on combined subsamplings on pixels and search candidates, ” Journal of Visual Comm. and Image Representation, vol. 12, pp. 96-105, 2001.
[84] C.-M. Liu and C.-N. Wang, “Perceptual interband correlation for octave subband coding of images,” in Proc. ISCAS (Monterey, LA, USA), vol.4, May 1998, pp.166 —169.
[85] C. H. Chou and Y. C. Li, “A perceptually tuned subband image coder based on the measure of just-noticeable-distortion profile,” IEEE Trans. Circuits and Systems for Video Technology, vol. 5, no 6, pp. 467-476, Dec. 1995.
[86] R. J. Safranek and J. D. Johnston, “A perceptually tuned subband image coder with image dependent quantization and post-quantization data compression,” in Proc. IEEE ICASSP, vol. 3, 1989, pp. 1945-1948.
[87] I. Daubechies, “Orthonormal bases of compactly supported wavelets,“ Commun. Pure App. Math., vol. 41, pp.909-996, Nov., 1988.
[88] M. Vetterli, and C. Herley, “Wavelets and filter banks: theory and design,“ IEEE Trans. Signal Processing, vol. 40, no. 9, pp. 2207-2232, Sept., 1992.
[89] P. P. Vaidyanathan, and P. Q. Hoang, “Lattice structures for optimal design and robust implementation of two-channel perfect-reconstruction QMF banks,” IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 36, no. 1, pp. 81-94, Jan., 1988.
[90] D. Le Gall, and A. Tabatabai, “Subband coding of digital images using symmetric short kernel filters and arithmetic coding techniques,“ in Proc. ICASSP, pp. 761-764, Apr., 1988.
[91] J. D. Johnston, “A filter family designed for use in quadrature mirror filter banks,“ in Proc. ICASSP, Apr., 1980, pp. 291-294.
[92] T. Kronander, “Subband coding of monochrome and color images,” Ph. D dissertation, Delft University of Technology, Delft, The Netherlands, 1989.
[93] I. Daubechies, “Ten lectures on wavelets,” SIAM Press, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, 1992.
[94] D. J. Connor and J. O. Limb, “Properties of frame-difference signal generated by moving images, ” IEEE Trans. Comm., pp. 1564 -1575, vol. 22, no. 10, Oct. 1974.
[95] T. Wiegand and G. Sullivan, “Draft ISO/IEC 14496-10 Joint Video Team (JVT): Working Draft Number 2, Revision 8 (WD-2 rev 8), ” JVT-B118r8, Apr. 2002.
[96] A. Hallapuro and M. Karczewicz, “Complexity Analysis of H.26L, “ ITU - Telecommunications Standardization Sector Video Coding Experts Group (VCEG), VCEG-N50.
[97] K. T. Choi, S. C. Chan, and T. S. Ng, “A new fast motion estimation algorithm using hexagonal subsampling pattern and multiple candidate search,” in Proc. IEEE International Conference on Image Processing, 1996, pp. 497-500.
[98] F. Moschettie and E. Debes, “About macroblock subsampling for motion estimation,” in Proc. IEEE International Conference on Multimedia and Expo (ICME), Tokyo, Japan, Aug. 2001.
[99] B. Liu and A. Zaccarin, “New fast algorithms for the estimation of block motion vector,” IEEE Trans. Circuits Syst. Video Technol., pp. 148-157, vol. 3, no. 2, Apr. 1993.
[100] Y.-L. Chan and W.-C. Siu, “New adaptive pixel decimation for block motion vector estimation,” IEEE Trans. Circuits Syst. Video Technol., pp. 113-118, vol. 6, no. 1, Feb. 1996.
[101] Y.K. Wang., Y.Q. Wang, and H. Kuroda, “A globally adaptive pixel-decimation algorithm for block-motion estimation, ” IEEE Trans. Circuits Syst. Video Technol., pp.1006-1011, vol.10, no. 6, Sept. 2000.
[102] K. Lengwehasatit and A. Ortega, “Probabilistic partial-distance fast matching algorithms for motion estimation, ” IEEE Trans. Circuits Syst. Video Technol., pp.139-152, vol.11, no. 2, Feb. 2001.
[103] Video Experts Group, “H.26L Test Model Long Term Number 5 (TML-8) draft0, “ ITU-Telecommunication Standardization Sector, Portland, Oregon, USA 22-25, Aug. 2000.
[104] MPEG Video Group, “Anticipatory joint model (JM) of enhanced-compression video coding, ” ISO/IEC JTC1/SC 29/WG 11 N4355, July 2001.
[105] F. Moschettie and E. Debes, “A fast block matching for SIMD processors using subsampling,” in Proc. IEEE International Symposium on Circuits and Systems (ISCAS), May 2000, no. 4, pp.321-324.
[106] A. S. Lewis and G. Knowles, “Video compression using 3D wavelet transforms, ” Electronic Letters 15th, vol. 26, no. 6, pp.396-398, Mar. 1990.
[107] W. Mauersberger, “An adaptive transform coding system based on two-dimensional classification, ” Proc. of Picture Coding Symp. Ipswich, England, 1979, Pap 12.1.
[108] I. R. Greenshields and J. A. Rosiene, “A fast wavelet-based Karhunen-Loeve transform, ” Pattern Recongition, vol. 31, no. 7, pp.839-845, July 1998.
[109] P. P. Vaidyanathan, and P. Q. Hoang, “Lattice structures for optimal design and robust implementation of two-channel perfect-reconstruction QMF banks, ” IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 36, no. 1, pp. 81-94, Jan. 1988.
[110] C.-N. Wang, C.-M. Liu, and Tihao Chiang, “Improved mpeg-4 visual texture coding using perceptual dithering for transparent image coding,” in Proc. IEEE Pacific-Rim Conference On Multimedia, Beijing, Oct. 24-26, 2001.
[111] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, “Numerical recipes in C: the art of scientific computing second edition, " Cambridge University Press, 1990
[112] S.-W. Yang, C.-N. Wang, C.-M. Liu, and T. Chiang, “Fast motion estimation using N-queen pixel decimation, ” in Proc. The Second IEEE Pacific-Rim Conf. On Multimedia, Beijing, Oct. 24-26, 2001.
[113] “Intel architecture software developer’s manual, ” Intel Corp., vol.1-3, 1999.
[114] MPEG System Group, “ISO/IEC 14496-5:2001/FPDAM1, ” ISO/IEC JTC1/SC 29/WG11 N4278, July 2001.
[115] MPEG Video Group, “Experimental conditions for evaluating encoder motion estimation algorithms, ” ISO/IEC JTC1/SC 29/WG11 N3141, Dec. 1999.
[116] I. Singh, P. Agathoklis, and A. Antoniou, “Compression of color images using mixed transform techniques, ” in 1997 IEEE Pacific Rim Conference on Networking, vol. 1, 1997, pp. 334 —337.
[117] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using vector quantization in the wavelet transform domain, ” in Proc. ICASSP-90, vol. 4, 1990, pp. 2297 -2300.
[118] L.-M. Po and W.-C. Ma, “A novel four-step search algorithm for fast block motion estimation, ” IEEE Trans. Circuits Syst. Video Technol., pp. 313 -317, vol. 6, no. 4, June 1996.
[119] W.B. Mikhael and A. Ramaswamy, "Resolving Images in Multiple Transform Domains with Applications," Digital Signal Processing, pp. 81 -90, vol. 5, no. 2, Apr. 1995.
[120] W.B. Mikhael and A.S. Spanias, "Accurate representation of time-varying signals using mixed transforms with applications to speech," IEEE Trans. Circuits Syst., pp. 329 -331, vol. 36, no. 2, Feb. 1989.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊