(3.235.25.169) 您好!臺灣時間:2021/04/20 02:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林瀚宗
研究生(外文):Hang-Chung Lin
論文名稱:應用傳輸錯誤更正具精細伸縮特性之視訊可靠多點傳輸
論文名稱(外文):FGS Reliable Multicast Applying FEC
指導教授:李素瑛李素瑛引用關係
指導教授(外文):Suh-Yin Lee
學位類別:碩士
校院名稱:國立交通大學
系所名稱:資訊工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:58
中文關鍵詞:可靠多點傳輸傳輸錯誤更正具精細伸縮特性之視訊
外文關鍵詞:reliable multicastFECFGS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
即時影像傳輸在眾多的網際網路多媒體應用中,是一個非常重要的組成要件。視訊串流由於其即時傳輸的特性,對網路頻寬、封包延遲以及封包遺失必須有特定的要求。然而,現今的網際網路對於視訊串流並不提供服務品質的保證,因此,為了達到上述的需求,我們必須把壅塞控制以及錯誤控制列入考量。
壅塞控制的目的是為了預防封包遺失的發生,而錯誤控制的目標則是恢復封包遺失的傷害。為了達成壅塞控制,我們採用具精細伸縮特性的新影像壓縮技術,其可以支援視訊串流伺服器動態調整視訊資料傳輸率以因應網路頻寬變化,並且對於封包遺失也具有恢復能力。此外,由於多點傳輸是一種兼顧效率以及彈性的傳輸方式,我們決定使用這個技術來傳送視訊資料。
然而,錯誤控制在多點傳輸的模式中仍然需要考慮。在這篇論文中,我們展現一個可靠的多點傳輸視訊串流系統-應用傳輸錯誤更正具精細伸縮特性之視訊可靠多點傳輸。這個系統的特色包含(1)一個可以支援封包遺失回復的應用層通訊協定(2)一個能快速存取視訊資料以及幫助封包遺失回復的緩衝區架構(3)為了達成縮減封包遺失回復時間以及降低封包遺失回復頻寬的整合重送與傳輸錯誤更正可靠機制。
最後,我們展示系統的效能來證明它的確在及時影像傳輸中提供了高度的可靠性。

Delivery of real-time video over the Internet is an important component of many Internet multimedia applications. Due to its real-time nature, video streaming typically has special requirements on bandwidth, delay and loss. However, the current best-effort Internet does not offer any quality of service (QoS) guarantees for video streaming over the Internet. Thus, we have to take congestion control and error control into consideration in order to meet the requirements mentioned above.
The purpose of congestion control is to prevent packet loss and the goal of error control is to recover packet loss. In order to achieve congestion control, we adopt a new video compression framework called Fine Granular Scalability(FGS) which is capable of supporting a wide range of bandwidth-variation scenarios and being resilient to packet loss. Besides, since IP multicast is designed for efficiency and scalability, we utilize this technology as a means to transport video data.
However, error control still needs to be concerned for IP multicast. In this paper, we present a reliable multicast video streaming system─FGS Reliable Multicast Applying FEC(Forward Error Correction). The characteristics of the system include: (1) a novel application-level protocol which can support loss recovery, (2) a buffer architecture which can access the video data quickly and help loss recovery, (3) some reliable mechanisms which integrate FEC and retransmission to achieve the saving of loss recovery time and network bandwidth usage.
Finally, via experiments, we demonstrate the performance of the proposed system to show that it indeed provides high reliability in real-time video delivery.
Abstract (in Chinese).......................i
Abstract (in English)......................ii
Acknowledgement............................iv
Table of Contents...........................v
List of Figures..........................viii
List of Tables..............................x
Chapter 1 Introduction......................1
1.1 Motivation..............................1
1.2 Organization............................2
Chapter 2 Background........................4
2.1 Overview of Video Streaming.............4
2.2 Overview of Multicast...................5
2.2.1 Multicast vs. Unicast.................5
2.2.2 IP Multicast Address..................6
2.2.3 A Group Membership Protocol...........7
2.2.4 Multicast Routing Protocols...........8
2.2.5 Multicast Backbone (MBone)............8
2.2.6 Challenges for Reliable Multicast.....9
2.3 Introduction of MPEG-4 Fine Granularity Scalability..10
2.3.1 Review of Layered Scalable Coding Techniques.......10
2.3.2 The MPEG-4 FGS Video Coding and Streaming Framework..12
2.3.3 Bit-plane Coding of the DCT Coefficients...........13
2.3.4 FGS Packet-loss Resilience over Bandwidth-varying Networks....15
2.3.5 Improvement of Visual Quality of FGS...............16
2.4 Overview of Forward Error Correction.................16
Chapter 3 Related Works..................................19
3.1 Receiver-driven Layered Multicast (RLM)……………………………………19
3.2 Reliable Multicast Transport Protocol (RMTP)……………………………….20
3.3 Scalable Reliable Multicast (SRM)……………………………………………21
3.4 Randomized Reliable Multicast (RRM)……………………………………….22
3.5 Reliable Multicast Protocol with Local FEC………………………………….23
3.6 Adaptive Reliable Multicast (ARM)…………………………………………..24
Chapter 4 FGS Reliable Multicast Video Streaming System………………………...26
4.1 Server Architecture…………………………………………………………….27
4.2 Client Architecture……….…………………………………………………….27
4.3 System Interface……………………………………………………………….28
Chapter 5 Design Issues for Reliable Multicast Video Streaming System...………...30
5.1 Packet Size Issue………………………………………………………………30
5.2 Channel Management Issue…...………………………………………………31
5.3 Application-layer Protocol Issue………….…………………………………...32
5.4 Activation Issue…....…………………………………………………………..34
5.5 Buffer Management Issue…...…………………………………………………35
5.5.1 The Procedure of Buffer Management………………...………………..37
5.6 Error Recovery Issue…………....……………………………………………..39
5.6.1 QoS Monitor Module……………………………...……………………39
5.6.2 Virtual Group Module………………………………...………………...41
5.6.3 Join/Drop Channel Module…………………………………………......42
5.6.4 Recovery Module………………………………………………...……..44
Chapter 6 Experiments and Results………………………………...……………….46
6.1 Simulation Environment…………………………………………………...…46
6.1.1 Experimental Environment…………...…………………...……………46
6.1.2 Network Topology……………………………………………………...46
6.1.3 Video Source……………………………………………………..…….47
6.2 Experiments………………………………………………………………….48
6.2.1 Experiment for Foreman……..………………….……………………..49
6.2.1.1 Bandwidth Variation for Foreman…..….……………………..49
6.2.1.2 Packet Loss Distribution for Foreman….……………………..49
6.2.1.3 PSNR for Foreman…..………………….…………………….50
6.2.2 Experiment for News…………………………….…………………….51
6.2.2.1 Bandwidth Variation for News………………………………..51
6.2.2.2 Packet Loss Distribution for News..…………………………..52
6.2.2.3 PSNR for News…………………………...…………………..52
Chapter 7 Conclusion and Future Works……………………………………...…...54
Bibliography……………………………………………………………………….55

[1] D. Wu, Y. T. Hou, Y. Q. Zhang, “Transporting Real-Time Video over the Internet: Challenges and Approaches,” Proceedings of the IEEE, Vol. 88, No. 12, pp. 1855-1877, December 2000
[2] D. Wu, Y. T. Hou, W. Zhu, Y. Q. Zhang, J. M. Peha, “Streaming Video over the Internet: Approaches and Directions,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 11, No. 3, pp. 282-300, March 2001
[3] Q. Zhang, Y. Q. Zhang, W. Zhu, “Resource Allocation for Audio and Video Streaming over the Internet”, ISCAS 2000, May 28-31, 2000, Geneva, Switzerland
[4] H. P. Sze, S. C. Liew, Y. B. Lee, “A packet-loss-recovery scheme for continuous-media streaming over the Internet,” IEEE Communications Letters , Vol. 5, No. 3, pp. 116-118, March 2001
[5] N. F. Mir, “A survey of data multicast techniques, architectures, and algorithms,” IEEE Communications Magazine , Vol. 39, No. 9, pp. 164 -170, Sept. 2001
[6] J. Park, S. J. Koh, S. G. Kang, D. Y. Kim, “Multicast delivery based on unicast and subnet multicast,” IEEE Communications Letters, Vol. 5, No. 4, pp. 181-183, April 2001
[7] K. Nakauchi, H. Morikawa,T. Aoyama, “A network-supported approach to layered multicast,” 2001. ICC 2001. IEEE International Conference on Communications, Vol. 4, pp. 1227-1231, 2001
[8] S. McCanne, V. Jacobson, M. Vetterli, “Receiver-driven Layered Multicast,” In SIGCOMM symposium on Communication architectures and protocols, Palo Alto, California, Aug. 1996
[9] S. Paul, K. K. Sabnani, J. C. Lin, S. Bhattacharyya, “Reliable multicast transport protocol (RMTP),” IEEE J. Select. Areas Commun, Vol. 15, No 3, pp. 407—421, Apr. 1997
[10] J. C. Lin, S. Paul, “RMTP: A reliable multicast transport protocol,” in IEEE INFOCOM’96, Vol 3, pp. 1414-1424, 1997
[11] S. K. Kasera, J. Kurose, D. Towsley, “Scalable reliable multicast using multiple multicast groups,” CMPSCI Tech. Rep. TR 96-73, Oct. 1996; Also Proc. 1997 ACM Sigmetrics Conf., June 1997
[12] Z. Xiao, K. P. Birman, “A randomized error recovery algorithm for reliable multicast,” Proceedings of the IEEE, Vol 1, pp. 239 —248, 2001
[13] T. Noguchi, M. Yamamoto, H. Ikeda, “Reliable multicast protocol applied local FEC,” Communications, 2001. ICC 2001. IEEE International Conference on, Vol. 8, pp. 2348-2353, 2001
[14] J. Yoon, A. Bestavros, I. Matta, “Adaptive reliable multicast,” Communications, 2000. ICC 2000. 2000 IEEE International Conference on, Vol. 3, pp. 1542 -1546, 2000
[15] A. Puri, L. Yan, B. G. Haskell, “Temporal resolution scalable video coding,” Image Processing, 1994. Proceedings. ICIP-94., IEEE International Conference, Vol. 2, pp. 947 -951, 1994
[16] F. Ruljin, B. S. Lee, A. Gupta, “Scalable layered MPEG-2 video multicast architecture,” IEEE Transactions on Consumer Electronics, Vol. 47, No. 1, pp.55-62, February 2001
[17] W. Li, F. Ling, X. Chen, “Fine granularity scalability in MPEG-4 for streaming video,” Circuits and Systems, 2000 Proceedings ISCAS 2000 Geneva The 2000 IEEE International Symposium on, Vol. 1, pp. 299 -302, 2000
[18] D. Wu, Y. T. Hou, W. Zhu, H. J. Lee, T. Chiang, Y. Q. Zhang, H. J. Chao, “On End-to-End Architecture for Transporting MPEG-4 Video Over the Internet,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 10, No. 6, pp. 923-941, September 2000
[19] W. Li, “Overview of fine granularity scalability in MPEG-4 video standard,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 11, No. 3, pp. 301-317, March 2001
[20] M. V. D. Schaar, H. Radha, “Packet-loss resilient Internet video using MPEG-4 fine granular scalability,” Image Processing, 2000. Proceedings. 2000 International Conference on, Vol. 3, pp. 372 -375, 2000
[21] M. V. D. Schaar, H. Radha, C. Dufour, “Scalable MPEG-4 video coding with graceful packet-loss resilience over bandwidth-varying networks,” Multimedia and Expo, 2000. ICME 2000. 2000 IEEE International Conference on, Vol. 3, pp. 1487-1490, 2000
[22] R. Cohen, H. Radha, “Streaming fine-grained scalable video over packet-based networks,” IEEE Global Telecommunications Conference, 2000. GLOBECOM '00, Vol. 1, pp. 288 -292, 2000
[23] H. Radha, M. V. D. Schaar, Y. Chen, “The MPEG-4 fine-grained scalable video coding method for multimedia streaming over IP,” IEEE Transactions on Multimedia, Vol. 3, No. 1, pp. 53 -68, March 2001
[24] J. Nonnenmacher, E. W. Biersack, “Reliable Multicast: Where to Use Forward Error Correction,” Proceedings 5th Workshop on Protocols for High Speed Networks, pp. 134-148, October 1996
[25] C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., Vol. 27, 1948
[26] G. Davis, J. Danskin, “Joint source and channel coding for Internet image transmission,” in Proc. SPIE Conf. Wavelet Applications of Digital Image Processing XIX, Denver, CO, Aug. 1996
[27] A. M. Costello, S. McCanne, “Search party: using randomcast for reliable multicast with local recovery,” INFOCOM '99. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings of the IEEE, Vol. 3, pp. 1256 -1264, 1999
[28] W. T. Tan, A. Zakhor, “Video multicast using layered FEC and scalable compression,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 11, No. 3, pp. 373 -386, March 2001
[29] T. Zhang, Y. Xu, “Unequal packet loss protection for layered video transmission,” IEEE Transactions on Broadcasting, Vol. 45, No. 2, pp. 243—252, June 1999
[30] R. Talluri, “Error-resilient video coding in the ISO MPEG-4 standard,” IEEE Communications Magazine, Vol. 36, No. 6, pp. 112—119, June 1998
[31] Y. Wang, Q. F. Zhu, “Error control and concealment for video communication: A review,” Proceedings of the IEEE, Vol. 86, No. 5, pp. 974—997, May 1998
[32] M. Yajnik, J. Kurose, D. Towsley, “Packet Loss Correlation in the MBone Multicast Network,” Global Internet Conference, November 1996

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔