(3.238.118.78) 您好!臺灣時間:2021/04/15 22:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林欣頡
論文名稱:於視覺基礎安全系統的臉上遮蔽物偵測技術
論文名稱(外文):Detection of Faces with Covers in a Vision-Based Security System
指導教授:李錫堅李錫堅引用關係
指導教授(外文):Hsi-Jian Lee
學位類別:碩士
校院名稱:國立交通大學
系所名稱:資訊工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:73
中文關鍵詞:臉上遮蔽物偵測技術
外文關鍵詞:Detection of Faces with Covers
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中,我們提供一個可以偵測人臉上遮蔽物的視覺安全系統。本論文我們分了三個部分。第一部分,偵測移動物體和此物體上的膚色區域。為了避免背景出現很接近膚色的區域,我們利用frame difference 於參考的背景彩色影像和要處理的彩色影像來偵測移動物體。在均勻光線的前提假設下,參考的背景彩色影像和要處理的彩色影像之間光線條件可能會有微量的差異。因此,在做frame difference之前要修正此差異。我們的方法是計算背景彩色影像和要處理的彩色影像上相同sample points 的red-value, green-value, and blue-value 之差值。再把此三個差值分別做平均加入要處理的彩色影像每個點的red-value, green-value, and blue-value。偵測到移動物體之後,再此一動物體上找出膚色的區域。此目的是為了下一個部分要找出人臉的所在。再來我們討論一些色彩的空間,而我們選擇HSI color space 來偵測膚色區域。我們訓練一些sample膚色的hue values 來估計膚色hue value 的範圍。所以進來的彩色影像先轉換到HSI color space,然後利用之前所訓練出來的膚色範圍做thresholding in the hue value,做出二值化影像。最後在此二值化影像找出 connected-components 視為膚色區域。
第二部分,提供一個方法來區分此人臉是否有被遮蔽。首先,我們要找出頭的區域和臉的區域。利用人的幾何特性,用頭部和肩膀之間寬度的大變化來找出頭部區域。然後再頭部區域中找尋上一部分的膚色區域已視為臉部區域。再來定義face ratio 為臉部區域面積和頭部區域面積的比值來區分人臉是否有被遮蔽。所以若一個人的臉沒有被遮蔽,則此face ratio 會大於我們的threshold value。相反的,若一個人的臉有被遮蔽,則此face ratio 會小於我們的threshold value。
第三部分,利用我們的視覺安全系統來將遮蔽物做分類。遮蔽物的分類讓我們更進一步確定臉被遮蔽的人的確該注意、懷疑。我們先將可以人物分成兩類:此人頭低低的和臉上有遮蔽物。進而將遮蔽物細分為全罩式安全帽、口罩、太陽眼鏡。我們提出臉部膚色水平投影的方法來區分出我們定的類別。根據投影值和投影的相對位置,我們可以得到一些資訊來定義出一些模組。最後以這些模組為決策樹的決策點。利用此決策樹我們完成此遮蔽物的分類。

CHAPTER 1. INTRODUCTION 2
1.1. Motivation 2
1.2. Problem Definition 3
1.3. Survey of Related Work 6
1.3.1. Moving object detection 6
1.3.2. Face detection in grey level images 8
1.3.3. Face detection in color images 12
1.4. System Description and Assumptions 13
1.4.1. System Description 13
1.4.2. Assumptions 16
1.5. Thesis Organization 16
CHAPTER 2. Moving Object Detection and Skin-Region Detection 17
2.1. Introduction 17
2.2. Moving Object Detection 18
2.2.1. Frame Difference 18
2.2.2. Lighting Adjustment 21
2.3. Skin-Regions Detection 25
2.3.1. HSI color space 26
2.3.2. Skin-Colors Classification 32
2.3.3. Skin-Regions 36
CHAPTER 3. Face Location and Covers Detection 40
3.1. Face Region Determination 40
3.1.1. Categories of skin-regions 40
3.1.2. Head Location 41
3.1.3. Face Region Determination Method 44
3.2. Covers Detection by Face Ratio 47
CHAPTER 4. Classification of Covers 49
4.1. Introduction 49
4.2. Classification Method 50
4.2.1. Face color horizontal projection in the head region (our proposed method) 50
4.2.2. Classification 60
CHAPTER 5. Experimental Results and Analysis 62
5.1. Introduction 62
5.2. Results of Moving Object Detection 64
5.3. Results of Covers Detection 66
5.4. Results of Covers Classification 68
CHAPTER 6. Conclusion and Future Work 70

References
[1] R. Jain, “Extraction of Motion information from peripheral Process,” IEEE Trans. Pattern Anal. Mach. Intel., vol. PAMI-3, no. 5, 1981.
[2] Liang Wang, Weiming Hu, Tieniu Tan, “Recent developments in human motion analysis,” Pattern Recognition, vol. 36, pp.585 — 601, 2003.
[3] Y.H. Yang, M.D. Levine, “The background primal sketch: an approach for tracking moving objects Mach,” Vision Appl, vol. 5, pp.17—34, 1992.
[4] C. StauOer, W. Grimson, “Adaptive background mixture models for real-time tracking,” Proceedings of the IEEE CS Conference on Computer Vision and Pattern Recognition, Vol. 2, 1999, pp. 246—252.
[5] R.T. Collins, et al., “A system for video surveillance and monitoring: VSAM Anal report,” CMU-RI-TR-00-12, Technical Report, Carnegie Mellon University, 2000.
[6] M. H. Yang, D. J. Kriegman, and N. Ahuja, “Detecting Faces in Images: A Survey,” IEEE Transactions, Pattern Analysis and Machine Intelligence, vol. 24, no. 1, pp. 34-55, 2002.
[7] M. Turk and A. Pentland, “Eigenfaces for recognition,” Journal of cognitive neuroscience, vol. 3, no. 1, pp. 71- 86, 1991.
[8] H. A. Rowley, S. Baluja, and T. Kanade, ”Neural network-based face detection,” IEEE Transactions, Pattern Analysis and Machine Intelligence, vol. 20, no. 1, 1998.
[9] F. Samaria and S. Young, “HMM-based arechitecture for face identification”, Image and Computer Vision, vol. 12, no. 8, pp. 537-583, 1994.
[10] R. Bruneli and T. Poggio, “Face recognition: Features versus templates,” IEEE Transactions, Pattern Analysis and Machine Intelligence, vol. 15, no. 10, pp. 1042-1052, 1993.
[11] G. Yang and T. S. Huang, “Human face detection in complex background,” Pattern Recognition, vol. 27, no. 1, pp. 53-63, 1994.
[12] S. A. Sirohey, “Human Face Segmentation and Identification,” Technical Report CS-TR-3176, Univ. of Maryland, 1993.
[13] H. P. Graf, T. Chen, E. Petajan, and E. Cosatto, “Locating Faces and Facial Parts,” in Proc. First Int’l Conf. on Workshop Automatic Face and Gesture Recognition, 1995, pp. 41-46.
[14] T. K. Leung, M.C. Burl, and P. Perona, “Finding Faces in Cluttered Scenes Using Random Labeled Graph Matching,” in Proc. Fifth IEEE Int’l Conf. Computer Vision, 1995, pp. 637-644.
[15] K. C. Yow and R. Cipolla, “A Probabilistic Framework for Perceptual Grouping of Features for Human Face Detection,” in Proc. Second Int’l Conf. Automatic Face and Gesture Recognition, 1996, pp. 16-21.
[16] K. C. Yow and R. Cipolla, “Feature-Based Human Face Detection,” Image and Vision Computing, vol. 15, no. 9, pp. 713-735, 1997.
[17] R. L. Hsu, M. Abdel-Mottaleb, and A. K. Jain, “Face Detection in Color Images,” IEEE Transactions, Pattern Analysis and Machine Intelligence, vol. 24, no. 5, pp. 696-706, 2002.
[18] J. Cai and A. Goshtasby, “Detecting Human Faces in Color Images,” Image and Vision Computing, vol. 18, no. 1, pp. 63-75, 1999.
[19] C. H. Lee, J. S. KIM, and K. H. PARK, “Automatic Human Face Location in Complex Background and Color Information,” Pattern Recognition, vol. 29, no. 11, pp. 1877-1889, 1996.
[20] O. Bernier, and et al., “MULTRAK: A System For Automatic Multiperson Localization and Tracking in Real-Time,” in Proc. IEEE Int’l Conf. on Image Processing, New York, 2002, pp. 130-136.
[21] C. Garcia, and G. Tziritas, “Face detection using quantized skin colour regions

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔