(3.230.76.48) 您好!臺灣時間:2021/04/13 15:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳意芬
研究生(外文):Yi-Fen Chen
論文名稱:概念式自動問答探索系統
論文名稱(外文):Automatic Concept-Based Answer-Finding System
指導教授:柯皓仁柯皓仁引用關係楊維邦楊維邦引用關係
指導教授(外文):Hao-Ren KeWei-Pang Yang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:資訊科學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:69
中文關鍵詞:自動問答探索系統潛在語意分析概念空間答案類型的判別
外文關鍵詞:Automatic Answer-Finding SystemLatent Semantic AnalysisConceptual SpaceAnswer Type Detection
相關次數:
  • 被引用被引用:10
  • 點閱點閱:190
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一套以潛在語意分析 (LSA) 為核心技術的概念式自動問答探索系統。自動問答探索系統能讓使用者以自然語言的方式輸入新問題,系統會從歷史問答集中找出符合的答案。此套概念式自動問答探索系統首先學習三種知識庫:問題詞鍵和答案詞鍵間的關係矩陣、概念空間知識庫和答案類型判別知識庫。其中,問題詞鍵和答案詞鍵間的關係矩陣以及建構概念空間知識庫係利用潛在語意分析學習而得,而疑問詞鍵與答案類型的關係則是以一機率模組學習而得。依據此三種知識庫,概念式自動問答探索系統會比對新問題與問答集中的答案之詞鍵相似度、概念描述相似度和答案類型相似度,不僅透過詞鍵比對,更擷取出問題的概念描述,以期將自動問答探索系統提昇至語意層面。實驗中,先人工建構了關於籃球和棒球規則的問答組,概念式自動問答探索系統的效能在排序準確度 (TRDR) 評估上平均可達83.87%,準確率平均可達36.4%,而查全率平均可達44.2%;較非概念式的自動問答系統的效能在排序準確度、準確率和查全率的評估上,平均增幅分別為17.75%、8.53%、18.37%。
In this thesis, we propose an automatic concept-based answer-finding system (ACAF) that exploits LSA as its core technology. Users issue their new questions into the ACAF system by natural language, and the system will return suitable answers from the question-and-answer set (QA set). To accomplish its task, ACAF employs machine learning techniques to learn three kinds of knowledge: the relationship between question keywords and answer keywords, conceptual space, and answer-type knowledge. LSA is used learn the relation matrix between question keywords and answer keywords; LSA is used construct the conceptual space as well. In addition, a probabilistic model is employed to train the relations between interrogatives and answer types. According to these three knowledge bases, ACAF calculates the similarity of a new question and the answers in the QA set. ACAF not only compares keyword-similarity but also retrieves the concepts of the new question. In this manner, an automatic answer-finding system can be promoted to the semantic level. ACAF was evaluated by using a QA set about basketball and baseball rules, and average TRDR of 83.87%, average precision of 36.4% and average recall of 44.2% were achieved. Compared to ACAFW, the average increasing range of TRDR, precision, and recall are 17.75%, 8.53%, and 18.37% respectively.
英文摘要 I
中文摘要 II
致謝 III
目錄 IV
圖目錄 V
表目錄 VI
方程式目錄 VII
第一章 簡介 1
第一節 自動問答探索系統 1
第二節 研究動機 5
第三節 研究目的 6
第四節 論文架構 6
第二章 相關研究工作 7
第一節 以統計技術為基礎的自動問答探索系統 8
第二節 潛在語意分析 (Latent Semantic Analysis) 12
第三節 概念空間 (Concept Space) 的建立 16
第四節 答案類型 (Answer Type) 判別 18
第三章 概念式自動問答探索系統 27
第一節 系統架構 27
第二節 問答組詞鍵關係的學習機制 30
第三節 概念空間的建構 32
第四節 答案類型判別知識的學習 38
第五節 問答探索機制 40
第四章 實驗結果分析與評估 44
第一節 實驗問答集與實驗設計 44
第二節 評估方法 45
第三節 知識庫建構評估 47
第四節 ACAF查詢結果評估 55
第五章 結論與未來研究方向 60
第一節 結論 60
第二節 未來研究方向 61
參考文獻 63
附錄:ACAF搜尋流程 (以常問問答集為例) 67
1. [Aggarwal01] C.C. Aggarwal and P.S. Yu, “On Effective Conceptual Indexing and Similarity Search in Text Data,” Proc. IEEE International Conference on Data Mining, pp. 3-10, 2001.
2. [Bellegarda96] J.R. Bellegarda, J.W. Butzberger, Y.L. Chow, N.B. Coccaro, and D. Naik, “A Novel Word Clustering Algorithm Based On Latent Semantic Analysis,” IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 1, pp. 172-175, 1996.
3. [Berger00] A. Berger, R. Caruana, D. Cohn, D. Freitag, and V. Mittal, “Bridging the Lexical Chasm: Statistical Approaches to Answer-Finding,” Proc. of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 192-199, 2000.
4. [Brown90] P. Brown, J. Cocke, S.D. Pietra, V.D. Pietra, F. Jelinek, J. Lafferty, R. Mercer and P. Roossin, “A Statistical approach to machine translation,” Computational Linguistics, vol. 16, No. 2, pp. 79-85, 1990.
5. [Chung99] M. Chung, Q. He, K. Powell and B. Schatz, “Semantic Indexing for a Complete Subject Discipline,” Proc. of the fourth ACM conference on Digital libraries, pp. 39-48, 1999.
6. [Dumais02] S. Dumais, M. Banko, E. Brill, J. Lin and A. Ng, “Web Question Answering: Is More Always Better?,” Proc. of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 291-298, 2002.
7. [Fu01] W. Fu, B. Wu, Q. He and Z. Shi, “Text Document Clustering and the Space of Concept on Text Document Automatically Generated,” Info-tech and Info-net, 2001. Proceedings. ICII 2001 - Beijing. 2001 International Conferences on, vol. 3, pp. 107-112, 2001.
8. [Gose96] E. Gose, R. Johnsonbaugh and S. Jost, Pattern Recognition and Image Analysis. Prentice Hall, 1996.
9. [Halkidi02] M. Halkidi, Y. Batistakis and M. Vazirgiannis, “Clustering Validity Checking Methods: PartⅡ,” ACM SIGMOD Record, vol. 31, No. 3, pp. 19-27, 2002.
10. [Jain99] A. K. Jain, M. N. Murty and P. J. Flynn, “Data Clustering: A Review,” ACM Computing Surveys, vol. 31, No. 3, pp. 264-323, 1999.
11. [Kwok01] C. Kwok, O. Etzioni and D.S. Weld, “Scaling Question Answering to the Web,” ACM Trans. on Information Systems, vol. 19, No. 3, pp. 242-262, 2001.
12. [Landauer98] T.K. Landauer, P.W. Foltz, and D. Laham, “Introduction to Latent Semantic Analysis,” Discourse Processes, vol. 25, pp. 259-284, 1998.
13. [Lin01] D. Lin and P. Pantel, “Induction of Semantic Classes from Natural Language Text,” Proc. of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 317-322, 2001.
14. [Lin02] S.H. Lin, M.C. Chen, J.M. Ho and Y.M. Huang, “ACIRD: Intelligent Internet Document Organization and Retrieval,” IEEE Trans. On Knowledge and Data Engineering, vol. 14, No. 3, pp. 599-614, 2002.
15. [Google03] http://www.google.com, Google,2003.
16. [Nei99] J.Y. Nie, F. Ren, “Chinese information retrieval: using characters or words?,” Information Processing & Management, vol. 35, No. 4, pp. 443-462, 1999.
17. [Park96] C.P. Park and K.S. Choi, “Automatic Thesaurus Construction Using Bayesian Networks,” Information Processing and Management, vol. 32, No. 5, pp. 543-553, 1996.
18. [Pasca01] M. Pasca and S.M. Harabagiu, “Answer Mining from On-Line Documents,” Proc. of the ACL-2001 Workshop on Open-Domain Question Answering, pp. 38-45, 2001.
19. [Pasca01] M.A. Pasca and S.M. Harabagiu, “High Performance Question/Answering,” Proc. of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 366-374, 2001.
20. [Pinto02] D. Pinto, M. Branstein, R. Coleman, W.B. Croft, M. King, W. Li and X. Wei, “QuASM: A System for Question Answering Using Semi-Structured Data,” Proc. of the 2nd ACM/IEEE-CS joint conference on Digital Libraries, pp. 46-55, 2002
21. [Prager00] J. Prager, E. Brown and A. Coden, “Question-Answering by Predictive Annotation,” Proc. of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 184-191, 2000.
22. [Radev01] D. Radve, H. Qi, Z. Zheng, B.G. Sasha, Z. Zhang, W. Fan and J. Prager, “Mining the Web for Answers to Natural Language Questions,” Proc. of the 10th International Conference on Information and Knowledge Management, pp. 143-150, 2001.
23. [Radev02] D. Radev, W. Fan, H. Qi, H. Wu and A. Grewal, “Probabilistic Question Answering,” Proc. of the 11th World Wide Web Conference, pp. 408-419, 2002.
24. [Ricardo99] B.Y. Ricardo, R.N. Berthier, Modern Information Retrieval. Addison-Wesley, 1999.
25. [Sugumaran02] V. Sugumaran and V.C. Storey, “Ontologies for Conceptual Modeling: their Creation, Use, and Management,” Data and Knowledge Engineering, vol. 42, No.3, pp. 251-271, 2002.
26. [Yahoo!03] http://tw.yahoo.com, Yahoo! Taiwan Inc., 2003.
27. [Yam03] http://www.yam.com, Yam Digital Technology, 2003.
28. [Yang00] Y. Yang, T. Ault, T. Pierce and C.W. Lattimer, “Improving Text Categorization Methods for Event Tracking,” Proc. of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 65-72, 2000.
29. [Zelikovitz01] S. Zelikovitz and H. Hirsh, “Using LSI for Text Classification in the Presence of Background Text,” Proc. of the 10th International ACM Conference on Information and Knowledge Management, pp. 113-118, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔