|
[1] B. Lee, and Richards, F. M. “Solvent accessibility of groups in proteins.”, J. Mol. Biol. 55, 379-400, 1971. [2] Connolly, M. L. “Solvent-Accessible Surfaces of Proteins and Nucleic Acids.”, Science 221, 709-713. [3] Connolly, M. L. “Shape complementarity at the hemoglobin α1β1 subunit interface.”, Biopolymers 25, 1229-1247, 1986. [4] Lin, S. L., Nussinov, R., Fischer, D. & Wolfson, H. J. “Molecular surface representation by sparse critical points.”, Proteins: Struct. Funct. Genet. 18, 94-101, 1994. [5] Wang, H. “Grid-search molecular accessible algorithm for solving the protein docking problem.”, J. Comp. Chem. 12, 746-750, 1991. [6] Norel, R., Lin, S. L., Wolfson, H. J. & Nussinov, R. “Shape complementarity at protien-protein interfaces.”, Biopolymers 34, 933-940 1994. [7] Norel, R., Lin, S. L., Wolfson, H. J. & Nussinov, R. “Molecular surface complementarity at protein-protein interfaces: The critical role played by surface normals at well placed, sparse, points in docking.”, J. Mol. Biol. 252, 263-273, 1995. [8] Fischer, D., Lin, S. L., Wolfson, H. J. & Nussinov, R. “A geometry-based suite of molecular docking processes.”, J. Mol. Biol. 248, 459-477, 1995. [9] Norel, R., Petrey D., Wolfson, H. J. & Nussinov, R. “Examination of shspe complementarity in docking of unbound proteins.”, Proteins: Struct. Funct. Genet. 36, 307-317, 1999. [10] Eleanor J. Gardiner, Peter Willett, and Peter J. Artymiuk “Protein docking using a Genetic Algorithm.”, Proteins: Struct. Funct. Genet. 44, 44-56, 2001. [11] Manuela Helmer-Citterich and Anna Tramontano “PUZZLE: A new method for automated protein docking based on surface shape complementarity.”, J. Mol. Biol. 235, 1021-1031 1994 [12] Pen-Chyi Chen. “Research on frequency domain morphing method and an application to Average of Brains.”, 國立交通大學資訊科學所碩士論文, 2002 [13] Michael J. E. Sternberg “Protein Structure Prediction─A Practical Approach.”, 1996
|