(3.236.100.6) 您好!臺灣時間:2021/04/24 01:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳官辰
研究生(外文):Tan Koan-Sin
論文名稱:主動延遲控制之傳輸控制協定
論文名稱(外文):Active Delay Control for TCP
指導教授:孔祥重羅濟群羅濟群引用關係
指導教授(外文):H.T. KungChih-Chung Lo
學位類別:博士
校院名稱:國立交通大學
系所名稱:資訊管理所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
中文關鍵詞:TCPActive Delay ControlECNcongestion controlmany TCP flows
外文關鍵詞:TCPActive Delay ControlECNcongestion controlmany TCP flows
相關次數:
  • 被引用被引用:0
  • 點閱點閱:207
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
主動延遲控制 (Active Delay Control) 是我們所提出的一個新的控制傳輸協定 (Transmission Control Protocol (TCP)) 的改良方法,我們在端點 (endpoints) 延遲封包的傳輸以改善 TCP 的效能。延遲的時間多寡可以由路由器依據擁塞程度或者由端點依據所收到的擁塞信號來作決定。在多條 TCP 搶用一條有限頻_的線時,Active Delay Control 可以將這些 TCP 的傳輸速率有效降低,不會像現在的 TCP 一樣造成很多的 timeout。所以 Active Delay Control 對一些生命週期很長而且不能忍受 timeout的 TCP 應用,如影像串流 (video streaming) 和儲存網路 (storage network) 是很有用的。此外,對一些生命週期較短,而且需要很快有效傳輸的 TCP 應用,如 HTTP,Active Delay Control也是很有用的。我們在本文中說明 Active Delay Control 的源由與概念,並藉由模擬分析其效能。

Active Delay Control is a novel extension for TCP, where TCP
endpoints impose delays on the transmission of packets to improve
TCP's performance. The amount of delay can be calculated by
routers based on the level of congestion, or by endpoints based
on the received congestion signal. When there are many TCP flows
competing for the bandwidth of a link, Active Delay Control
mechanism can reduce their transmission rates to arbitrary degrees
by increasing delays, without experiencing timeouts as in today's
TCP. This mechanism is useful for those long-lived TCP-based
applications that can not tolerate timeouts including video
streaming and storage networks. This mechanism is also useful for
short-lived flows that require short transfer time, such as HTTP
transactions. This thesis presents the concept and motivation
behind Active Delay Control and performs analysis and
simulations.

1 Introduction 1
2 Review of TCP and Related Mechanisms 3
2.1 TCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.1 Congestion Window . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Slow Start . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Congestion Avoidance . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Fast Retransmit . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.5 Fast Recovery . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.6 TCP Variants . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Queue Management Mechanisms . . . . . . . . . . . . . . . . . . 10
2.3 More on Many-flow Problem and Related Work . . . . . . . . . . 13
3 Concepts and Mechanisms of Active Delay Control 15
3.1 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4 Evaluation of Basic Concept 18
4.1 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Number of Timeouts as a Function of Propagation Delay . . . . 20
4.3 Number of Timeouts as a Function of Router Queue Size . . . . 22
4.4 Performance Improvement of Delay Control at Endpoints . . . . 25
5 Receive-Based Delay Control 28
5.1 RDC Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.1 Exact RDC . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.2 Properties of Exact RDC . . . . . . . . . . . . . . . . . . 32
5.1.3 1-bit RDC . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Simple Simulation for RDC . . . . . . . . . . . . . . . . . . . . . 36
6 Streaming Video over RDC 40
6.1 Layered Video Streaming . . . . . . . . . . . . . . . . . . . . . . 41
6.1.1 Hierarchically-encoded Layered Video . . . . . . . . . . . 41
6.1.2 Use of TCP as the Transport Protocol . . . . . . . . . . . 41
6.1.3 Video Source Streaming Algorithm . . . . . . . . . . . . . 42
6.2 Simulations of Video Streaming . . . . . . . . . . . . . . . . . . . 44
6.2.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . 45
6.2.2 10-Stream Simulation . . . . . . . . . . . . . . . . . . . . 46
6.2.3 100-Stream Simulation . . . . . . . . . . . . . . . . . . . . 49
6.2.4 Streams with Different Round-trip Times . . . . . . . . . 51
6.2.5 Performance Summary . . . . . . . . . . . . . . . . . . . . 52
6.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7 Sender-Based Delay Control 55
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.2 Sender-Based Delay Control . . . . . . . . . . . . . . . . . . . . . 57
7.2.1 Two-phase Control for SDC . . . . . . . . . . . . . . . . . 58
7.2.2 SDC Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 61
7.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.3.1 Number of Timeouts . . . . . . . . . . . . . . . . . . . . . 64
7.3.2 Number of Packet Drops . . . . . . . . . . . . . . . . . . . 65
7.3.3 Packet Delivery Latency . . . . . . . . . . . . . . . . . . . 66
7.3.4 Reducing Bias Against Long RTT . . . . . . . . . . . . . 68
7.3.5 Bandwidth Competition with Traditional TCP . . . . . . 69
7.3.6 Enhancement via the Use of AVQ . . . . . . . . . . . . . 70
8 Conclusions 73

[1] J. Postel, Transmission Control Protocol, Sept. 1981. RFC 793.
[2] S. Floyd, “A report on some recent developments in tcp congestion control,”
IEEE Communications Magazine, vol. 39, pp. 84—90, April 2001.
[3] R. T. Morris, “TCP behavior with many flows,” in IEEE International
Conference on Network Protocols, (Atlanta, Georgia), October 1997.
[4] V. Jacobson, “Congestion avoidance and control,” ACM Computer Communication
Review, vol. 18, pp. 314—329, Aug. 1988. Proceedings of the
SIGCOMM ’88 Symposium in Stanford, CA, August, 1988.
[5] K. Ramakrishnan and S. Floyd, A Proposal to add Explicit Congestion
Notification (ECN) to IP, Jan. 1999. RFC 2481.
[6] M. Allman, H. Balakrishnan, and S. Floyd, Enhancing TCP’s Loss Recovery
Using Limited Transmit, Jan. 2001. RFC 3042.
[7] C. Villamizar and C. Song, “High performance tcp in ansnet,” ACM Computer
Communication Review, vol. 24, pp. 45—60, Oct. 1994.
[8] M. Allman, V. Paxson, and W. Stevens, TCP Congestion Control, Apr.
1999. RFC 2581.
[9] V. Jacobson, “Modified tcp congestion avoidance algorithm,” end2endinterest
mail list, Apr. 1990.
[10] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, TCP Selective Acknowledgement
Options, Oct. 1996. RFC 2018.
[11] S. Floyd and T. Henderson, The NewReno Modification to TCP’s Fast
Recovery Algorithm, Apr. 1999. RFC 2582.
[12] S. Floyd and V. Jacobson, “Traffic phase effects in packet-switched gateways,”
Internetworking: Practice and Experience, vol. 3, no. 3, pp. 115—156,
September, 1992.
[13] S. Floyd and V. Jacobson, “Random early detection gateways for congestion
avoidance,” IEEE/ACM Transactions on Networking, vol. 1, no. 4,
pp. 397—413, 1993.
74
[14] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd,
V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan,
S. Shenker, J. Wroclawski, and L. Zhang, Recommendations on Queue
Management and Congestion Avoidance in the Internet, Apr. 1998. RFC
2309.
[15] D. Lin and R. Morris, “Dynamics of random early detection,” in SIGCOMM
’97, (Cannes, France), pp. 127—137, september 1997.
[16] R. T. Morris, Scalable TCP Congestion Control. PhD thesis, Harvard University,
1999.
[17] W. chang Feng, D. D. Kandlur, D. Saha, and K. S. Shin, “Techniques for
eliminating packet loss in congested TCP/IP networks,” Tech. Rep. CSETR-
349-97, U. Michigan, 4 1997.
[18] D.-M. Chiu and R. Jain, “Analysis of the increase and decrease algorithms
for congestion avoidance in computer networks,” Computer Networks and
ISDN Systems, vol. 17, p. 14, 1989.
[19] L. Qiu, Y. Zhang, and S. Keshav, “On individual and aggregate TCP
performance,” in Proceedings of ICNP, 11, 1999.
[20] S. Floyd, “TCP and explicit congestion notification,” ACM Computer
Communication Review, vol. 24, no. 5, pp. 10—23, 1994.
[21] D. Lin. and H. T. Kung, “TCP fast recovery strategies: Analysis and improvements,”
in Proceedings of the Conference on Computer Communications
(IEEE Infocom), (San Francisco, California), March/April 1998.
[22] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, M. Stemm, and R. H.
Katz, “TCP behavior of a busy internet server: Analysis and improvements,”
in Proceedings of the Conference on Computer Communications
(IEEE Infocom), vol. 1, pp. 252—262, March/April 1998.
[23] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based congestion
control for unicast applications,” in Proceedings of SIGCOMM 2000,
(Stockholm, Sweden), pp. 43—56, 2000.
[24] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP throughput:
A simple model and its empirical validation,” ACM Computer Communication
Review, vol. 28, pp. 303—314, Sept. 1998.
[25] UCB/LBNL/VINT, “Vint network simulator - ns,” 1997.
[26] W. R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols. Reading,
MA, USA: Addison-Wesley, Dec. 1993.
[27] P.-H. Hsiao, H. T. Kung, and K.-S. Tan, “Active delay control for TCP,” in
Proceedings of the IEEE Conference on Global Communications (GLOBECOM),
(San Antonio, TX), 2001.
75
[28] R. Jain, “Congestion control in computer networks: Issues and trends,”
IEEE Network, pp. 24—30, 1990.
[29] S. Savage, D.Wetherall, A. R. Karlin, and T. Anderson, “Practical network
support for IP traceback,” in Proceedings of SIGCOMM 2000, (Stockolm,
Sweden), pp. 295—306, 2000.
[30] F. P. Kelly, “Stochastic modes of computer communication systems,” Journal
of the Royal Statistical Society Series B, vol. 47, no. 3, pp. 379—395,
1985.
[31] I. M.-C. Tam, J. Su, and W. Wang, “Improving TCP performance over
asymmetric networks,” ACM Computer Communication Review, vol. 30,
July 2000.
[32] S. Floyd and V. Jacobson, “On traffic phase effects in packet-switched
gateways,” Computer Communication Review, vol. 21, pp. 115—156, April
1991.
[33] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based congestion
control for unicast applications,” in Proceedings of SIGCOMM 2000,
Aug. 2000.
[34] R. Rejaie, M. Handley, and D. Estrin, “Quality adaptation for congestion
controlled video playback over the internet,” in Proceedings of SIGCOMM
’99, pp. 189—200, 1999.
[35] S. Floyd and K. R. Fall, “Promoting the use of end-to-end congestion control
in the internet,” IEEE/ACM Transactions on Networking, vol. 7, no. 4,
pp. 458—472, 1999.
[36] J. Mahdavi and S. Floyd, “Tcp-friendly unicast rate-based flow control.”
Note sent to end2end-interest mailing list, January 1997.
[37] D. Clark, Window and Acknowledgement Strategy in TCP, July 1982. RFC
813.
[38] M. Vishwanath and P. Chou, “An efficient algorithm for hierarchical compression
of video,” in Proceedings ICIP-94 (IEEE International Conference
on Image Processing), vol. 3, (Austin, Texas), pp. 275—279, IEEE Computer
Society Press, 1994.
[39] J.-Y. Lee, T.-H. Kim, and S.-J. Ko, “Motion prediction based on temporal
layering for layered video coding,” in Proc. ITC-CSC, vol. 1, July 1998.
[40] S. McCanne and M. Vetterli, “Joint source/channel coding for multicast
packet video,” in Proceedings of IEEE International Conference on Image,
October 1995.
[41] S. McCanne, Scalable Compression and Transmission of Internet Multicast
Video. PhD thesis, University of California, Berkeley, 1996.
76
[42] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair
queueing algorithm,” Internetworking: Research and Experience, vol. 1,
pp. 3—26, 1990.
[43] S. Kunniyur and R. Srikant, “Analysis and design of an adaptive virtual
queue algorithm for active queue management,” in Proceedings of ACM
SIGCOMM 2001, Aug 2001.
[44] N. T. Spring, M. Chesire, M. Berryman, V. Sahasranaman, T. Anderson,
and B. N. Bershad, “Receiver based management of low bandwidth access
links,” in Proceedings of the Conference on Computer Communications
(IEEE Infocom), pp. 245—254, 2000.
[45] H. Kanakia, P. P. Mishra, and A. Reibman, “An adaptive congestion control
scheme for real-time packet video transport,” in Proceedings of the
1993 ACM SIGCOMM Annual Technical Conference, September 1993.
[46] A.-V. T. W. Group, H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson,
RTP: A Transport Protocol for Real-Time Applications, Jan. 1996.
RFC 1889.
[47] S. McCreay and kc claffy, “Trends in wide area ip traffic patterns,” May
2000. http://www.caida.org/outreach/papers/2000/AIX0005/.
[48] Y. Zhang and L. Qiu, “Understanding the end-to-end performance impact
of red in a heterogeneous environment,” Tech. Rep. 2000-1802, Cornell CS,
July 2000.
[49] S. Floyd, “Connections with multiple congested gateways in packetswitched
networks part1: One-way traffic,” ACM Computer Communication
Review, vol. 21, pp. 30—47, Oct. 1991.
[50] S. Athuraliya, V. H. Li, S. H. Low, and Q. Yin, “REM: Active queue
management,” IEEE Network, vol. 15, pp. 48 — 53, May/June 2001.
[51] W. chang Feng, D. D. Kandlur, D. Saha, and K. G. Shin, “A self-configuring
RED gateway,” in Proceedings of INFOCOM 99, vol. 3, pp. 1320—1328,
1999.
[52] S. Kunniyur and R. Srikant, “Analysis and design of an adaptive virtual
queue (avq) algorithm for active queue management,” in Proceedings of
SIGCOMM 2001, (San Diego, California, USA), 8 2001.
[53] T. J. Ott, T. V. Lakshman, and L. H. Wong, “SRED: Stabilized RED,” in
Proceedings of INFOCOM, vol. 3, pp. 1346—1355, 1999.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔