|
[1] Lighthill, M. J., and G. B Whitham, “ On Kinematics Waves II. A Theory of Traffic Flow on Long Crowded Road “, London, Proceedings Royal Society, A229, pp.317-345, 1955. [2] May, A. D., Traffic Flow Fundamentals, Prentice Hall, Englewood Cliffs, NJ, 1990. [3] Payne, H. J., “Freflo: A Macroscopic Simulation Model of Freeway Traffic”, Transportation Research Record, No.722, 1979. [4] Prigogine, I., and F. C. Andrews, ”A Boltzmann-Like Approach For Traffic Flows”, Operations Research, Vol. 8, pp.789-797, 1960. [5] Prigogine, I., and R. Herman, Kinetic Theory of Vehicular Traffic, American Elsevier Publishing Company, 1971. [6] Reuschel, A., “Vehicles Moves in a Platoon”, Oesterreichisches Ingenieur-Archir, Vol. 4, pp.193-215, 1950. [7] Chandler, R. E., R. Herman, and E. W. Montroll, “Traffic Dynamics: Studies In Car Following”, Operations Research, Vol. 6, pp.165-184, 1958. [8] Gazis, D. C., R. Herman, and R. B. Potts, “Car-Following Theory Of Steady-State Traffic Flow”, Operations Research, Vol. 7, pp.499-505, 1959. [9] Herman, R., E. W. Montroll, R. B. Potts, and R. W. Rothery, “Traffic Dynamics: Analysis Of Stability In Car Following”, Operations Research, Vol. 7, pp.499-505, 1959. [10] Cho, H. J., S. C. Lo, “Modeling of Self-Consistent Multi-Class Dynamic Traffic Flow Model”, to appear Physica A,2002. [11] Helbing, D., “Gas-kinetic derivation of Navier-Stokes-like traffic equation”, Physical Review E, Vol. 53, No. 3, pp.2266-2381, 1996. [12] Pipes, L. A., “An Operational Analysis of Traffic Dynamics”, Journal of Applied Physics, Vol. 24, No. 3, pp.274-287, 1953. [13] Newell, G. F., “Nonlinear Effects In The Dynamics Of Car Following”, Operations Research, Vol. 9, pp.209-229, 1961. [14] Todosiev, E. P., and L. C. Barbosa, “A Proposed Model for the Driver-Vehicle System”, Traffic Engineering, Vol. 34, pp.17-20, 1964. [15] Wiedemann, R., Simulation des strabβenverkehrsfluβes, Technical Report, Institute for Traffic Engineering, University of Karlsrühe (in German), 1974. [16] Nagel, K., “Particle Hopping Models and Traffic Flow Theory”, Physical Review E, Vol. 53, pp.4655-4672, 1996. [17] Nagel, K., “From Particle Hopping Models and Traffic Flow Theory”, Transportation Research Record, No. 1644, pp.1-9, 1998. [18] Anderson, R. L., R. Herman, and I. Prigogine, “On The Statistical Distribution Function Theory Of Traffic Flow”, Operations Research, Vol. 10, pp.180-196, 1962. [19] Herman, R., and T. Lam, “On The Mean Speed In The ‘Boltzmann-Like’ Traffic Theory: Analytical Derivation”, Transportation Science, Vol. 5, No. 3, pp.314-326, 1971. [20] Paveri-Fontana, S. L., “On Boltzmann-Like Treatments for Traffic Flow: A Critical Review of the Basic Model and An Alternative Proposal for Dilute Traffic Analysis”, Transportation Research, Vol. 9, pp.225-235, 1975. [21] Edie, L. C., R. Herman, and T. N. Lam, “Observed Multilane Speed Distribution And The Kinetic Theory Of Vehicular Traffic”, Transportation Science, Vol. 14, No. 1, pp.55-76, 1980. [22] Lampis, M., “On The Kinetic Theory Of Traffic Flow In The Case Of A Nonnegligible Number Of Queueing Vehicles”, Transportation Science, Vol. 12, No.1, pp.16-28, 1978. [23] Nelson, P., “A Kinetic Theory of Vehicular Traffic and its Associated Bimodal Equilibrium Solutions”, Transport Theory and Statistical Physics, Vol. 24, pp.383-409, 1995. [24] Nelson, p., D. D. Bui., and A. Sopasakis, “A Novel Traffic Stream Model Deriving from a Bimodal Kinetic Equation”, Proceedings of the IFAC conference, pp.799-804, 1997. [25] Helbing, D. and A. Greiner, “Modeling and Simulation of Multilane Traffic Flow”, Physical Review E, Vol. 55, No. 5, pp.5498-5508, 1997. [26] Klar, A., and R. Wegener, “A Hierarchy of Models for Multilane Vehicular Traffic I & II: Modeling”, SIAM Journal of Applied Mathematics, 1998. [27] Hoogendoorn, S. P. and P. H. L. Bovy, “Modeling Multiple User-Class Traffic”, Transportation Research Record, No. 1644, pp.57-70, 1998. [28] Hoogendoorn, S. P. and P. H. L. Bovy, “Continuum Modeling of Multiclass Traffic Flow”, Transportation Research Part B, Vol. 34, pp.123-146, 2000. [29] Cho, H. J. and S. C. Lo, “Numerical Simulation of the Multilane Traffic Dispersion”, Applied Physics Letter, 2001.(submitted paper) [30] Cho, H. J. and S. C. Lo, “Modeling of Nonlinear Mixed Traffic Dispersion”, the Networks and the Spatial Economics, 2001.(submitted paper) [31] Bellomo, N., Lecture notes on the mathematical theory of the Boltzmann equation, World Scientific, 1995. [32] Nordsiech, A., B. L. Hicks., “Monte Carlo evaluation of the Boltzmann collision integral”, in Proc. 5-th Intern. Symp. On RGD, C. L. Brundin Ed., Academic Press, Vol. 1, pp.695-710, 1967. [33] Aristov, V. V., “On solution of the Boltzmann equation for discrete velocities,” Dokl. Akad. Nauk USSR, Vol. 283, No. 4, pp831-834, 1985. [34] Tan, Z., Y. K. Chen, P. L. Varghese and J. R. Howell, “New numerical strategy to evaluate the collision integral of the Boltzmann equation,” in Proc. 16th Intern. Symp. On RGD, Progress in Aeronaut. And Astronaut, pp.359-373, 1989. [35] Bird, G. A., “Direct simulation and the Boltzmann equation”, Phys.l Fluids, Vol. 13, No. 11, pp-2676-2681, 1970. [36] Nanbu, K., “Direct simulation scheme derived from the Botzmann equation. I. Monocomponent gases,” J. Phys. Soc. Japan, Vol. 49, No. 5, pp.2042-2049, 1980. [37] Nanbu, K., “Direct simulation scheme derived from the Botzmann equation. II. Multicomponent gases mixtures,” J. Phys. Soc. Japan, Vol. 49, No. 5, pp.2050-2054, 1980. [38] Nanbu, K., “Direct simulation scheme derived from the Botzmann equation. III. Rough sphere gases,” J. Phys. Soc. Japan, Vol. 49, No. 5, pp.2055-2058, 1980. [39] Nanbu, K., “Direct simulation scheme derived from the Botzmann equation. IV. Correlation of velocity,” J. Phys. Soc. Japan, Vol. 50, No. 9, pp.2829-2836, 1981. [40] Babovsky, H., “On a simulation scheme for the Boltzmann equation”, Math. Methods Appl. Sci., Vol. 8, pp.223-233, 1986. [41] William, G., L. Ewing, and S. Anthony, Using MPI-Portable Parallel Programming with the Message Passing Interface, The MIT Press, Cambridge, Masachusetts, London, England. [42] Bellomo, N. and M. L. Schiavo, “From the Boltzmann Equation to Generalized Kinetic Models in Applied Science”, Mathematical and Computer Modelling, Vol. 26, No. 7, pp.43-76, 1997. [43] Yang, Q. and H. N. Koutsopoulos, “A Microscopic Traffic Simulator for Evaluation of Dynamic Traffic Management Systems,” Transportation Research Port C, Vol. 4, No. 3, pp.113-129, 1996. [44] Kalos, M. H. and P. A. Whitlock, Monte Carlo Methods Volume I: Basics, John Wiley & Sons, Inc., 1986. [45] Duke, Schofer, and May, “A Statistical Analysis of Speed-Density Hypotheses,” Highway Research Record 154, Transportation Research Board, Washington, DC, 1967. [46] Gerlough, D. L. and M. J. Huber, Traffic Flow Theory: A Monograph, Transportation Research Board National Research Council, Washington, D.C., 1975.
|