|
[1] P. Moller, “All-reflective 1:1 projection printing system,” in Proc. Reg. Tech. Conf. Photopolymers, 1973, pp. 56-65. [2] J. D. Buckley, D. N. Galburt, and C. Karatzas, “Step-and-scan lithography using reduction optics,” J. Vac. Sci. Technol. B, vol. 7, pp. 1607-1612, Nov. 1989. [3] I. M. Mackintosh, “Application of the scanning electron microscope to solid-state devices,” in Proc. IEEE, vol. 53, 1965, pp. 370-377. [4] R. F. M. Thornley and T. Sun, “Electron beam exposure of photoresists,” J. Electrochem. Soc., vol.112, pp. 1151-1153, 1965. [5] D. L. Spears and H. I. Smith, “High-resolution pattern replication using soft x-rays,” Electron. Lett., vol. 8 , pp. 102-104, 1972. [6] K. Jain, C. G. Willson, and B. J. Lin, “Ultrafast deep UV lithography with excimer lasers,” IEEE Electron Device Lett., vol. EDL-3, pp. 53-55 , Mar. 1982. [7] Industrial Affiliation Program (IIAP): 157nm optical lithography. IMEC, Belgium [Online]. Available: http://www.imec.be/wwwinter/business/157nm.pdf [8] H. Hopkins, “On the diffraction theory of optical images,” Proc. R. Soc. London Ser. A, vol. 217, pp. 408-432, May 1953. [9] M. Born and E. Wolf, Principles of Optics, 6th ed. Cambridge, England: Cambridge University Press, 1980, pp. 441. [10] T. A. Brunner, “Pushing the limits of lithography for IC production,” in Tech. Dig., Int. Electron Devices Mtg., 1997, pp.9-13. [11] B. Davari, C. W. Koburger, R. Schulz, J. D. Warnock, T. Furukawa, M. Jost, Y. Taur, W. G. Schwittek, J. K. DeBrosse, M. L. Kerbaugh, J. L. Mauer, “A new planarization technique, using a combination of RIE and chemical mechanical polish (CMP),” in Tech. Dig., Int. Electron Devices Mtg., 1989, pp.61-64. [12] C. A. Mack, “Optimum stepper performance through image manipulation,” in Proc. KTI Microelectronics Seminar Interface ’89, 1989, pp. 209-215. [13] D. L. Fehrs, H. B. Lovering, and R. T. Scruton, “Illuminator modification of an optical aligner,” in Proc. KTI Microelectronics Seminar Interface ’89, 1989, pp. 217-230. [14] M. Noguchi, M. Muraki, Y. Iwasaki, and A. Suzuki, “Subhalf micron lithography system with phase-shifting effect,” in Proc. SPIE, 1992, vol. 1674, pp. 92-104. [15] N. Shiraishi, S. Hirukawa, Y. Takeuchi, and N. Magome, “New imaging technique for 64M-DRAM,” in Proc. SPIE, 1992, vol. 1674, pp. 741-752. [16] K. Tounai, H. Tanabe, H. Nozue, and K. Kasama, “Resolution improvement with annular illumination,” in Proc. SPIE, 1992, vol. 1674, pp. 753-764. [17] M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices, vol. ED-29, pp. 1828-1846, Dec. 1982. [18] M. Shibuya, Japan patent 62-50811, No. 1441789 (in Japanese). [19] T. E. Jewell, J. H. Bennewitz, V. Pol and R. Cirelli, “0.25 um periodic structures for lightwave technology fabricated by spatial frequency doubling lithography (SFDL),” in Proc. SPIE, 1989, vol. 1088, pp. 496-503. [20] H. Fukuda, T. Terasawa, and S. Okazaki, “Spatial filtering for depth of focus and resolution enhancement in optical lithography,” J. Vac. Sci. Technol. B, vol. 9, pp. 3113-3116, Nov. 1991. [21] S. Inoue, T. Fujisawa, S. Tamaushi, and Y. Ogawa, “Optimization of partially coherent optical system for optical lithography,” J. Vac. Sci. Technol. B, vol. 10, pp. 3004-3007, Nov. 1992. [22] R. von Bunau, G. Owen, and R. F. W. Pease, “ Depth of focus enhancement in optical lithography,” J. Vac. Sci. Technol. B, vol. 10, pp. 3047-3054, Nov. 1992. [23] K. Matsumoto, N. Shiraishi, Y. Takeuchi, and S. Hirukawa, “Innovative image formation: coherency controlled imaging,” in Proc. SPIE, 1994, vol. 2197, pp. 844-853. [24] H. Fukuda, N. Hasegawa, T. Tanaka, and T. Hayashida, IEEE Electron Device Lett., vol. EDL-8, pp. 179-180, Apr. 1987. [25] H. Fukuda, N. Hasegawa, and S. Okazaki, “Improvement of defocus tolerance in a half-micron optical lithography by the focus latitude enhancement exposure method: simulation and experiment,” J. Vac. Sci. Technol. B, vol. 7, pp. 667-674, Jul. 1989. [26] M. Shibuya, T. Ozawa, M. Komatsu, and H. Ooki, “Performance of Resolution Enhancement Technique Using Both Multiple Exposure and Nonlinear Resist,” Jpn. J. Appl. Phys., Part I, vol. 33, no. 12B, pp. 6874-6877, Dec. 1994. [27] S. Asai, I. Hanyu, and M. Takikawa, “Resolution Limit for Optical Lithography Using Polarized Light Illumination,” Jpn. J. Appl. Phys., Part 1, vol. 32, no. 12B, pp. 5863-5866, Dec. 1993. [28] S. Matsuo, K. Komatsu, Y. Takeuchi, E. Tamechika, Y. Mimura, and K. Harada, “High resolution optical lithography system using oblique incidence illumination,” in Tech. Dig., Int. Electron Devices Mtg., 1991, pp. 970-972. [29] M. Noguchi, Y. Yoshitake, and Y. Kembo, “Resolution enhancement of stepper by complementary conjugate spatial filter,” in Proc. SPIE, 1992, vol. 1674, pp. 662-668. [30] Y. Takeuchi, S. Matsu, E. Tamechika, and K. Harada, “Analytical method for image characteristics of annular illumination with a spatial filter in optical projection lithography,” Jpn. J. Appl. Phys., Part 1, vol. 31, no. 12B, pp. 4120-4125, Dec. 1992. [31] H. Fukuda and R. Yamanaka, “A new pupil filter for annular illumination in optical lithography,” Jpn. J. Appl. Phys., Part 1, vol. 31, no. 12B, pp. 4126-4130, Dec. 1992. [32] S. Orii, and T. Sekino, “Performance of dipole illumination combined with pupil filter,” Jpn. J. Appl. Phys., Part 1, vol. 33, no. 12B, pp. 6855-6862, Dec. 1994. [33] K. Kamon, T. Miyamoto, Y. Myoi, H. Nagata, M. Tanaka, and K. Horie, ”Photolithography system using annular illumination,” Jpn. J. Appl. Phys., Part 1, vol. 30, no. 11B, pp. 3021-3029, Nov. 1991. [34] K. Kamon, T. Miyamoto, Y. Myoi, H. Nagata, N. Kotani and M. Tanaka, “Photolithography system using a combination of modified illumination and phase shifting mask,” Jpn. J. Appl. Phys., Part 1, vol. 31, no, 12B, pp. 4131-4136, Dec. 1992. [35] T. A. Brunner, “Rim phase-shift mask combined with off-axis illumination: a path to 0.5l/numerical aperture geometries,” Opt. Eng., vol. 32, pp. 2337-2343, Oct 1993. [36] T. Ogawa, M. Uematsu, F. Uematsu, M. Kimura, H. Shimizu, and T. Oda, “Sub-quarter micron optical lithography with practical super resolution technique,” in Proc. SPIE, 1995, vol. 2440, pp. 772-783. [37] T. Ogawa, M. Uematsu, K. Takeuchi, A. Sekiguchi, and T. Oda, “Challenges to depth-of-focus enhancement with a practical super-resolution technique,” in Proc. SPIE, 1996, vol. 2726, pp. 34-45. [38] A. K. Wong, Resolution Enhancement Techniques in Optical Lithography, Bellingham, Washington: SPIE Press, 2001, pp. 91-115. [39] International Technology Roadmap for Semiconductors, 2001 ed., International SEMATECH [Online]. Available: http://public.itrs.net/files/2001ITRS/litho.pdf [40] H. Y. Liu, L. Karklin, Y. T. Wang, and Y. C. Pati, “The application of alternating phase-shifting masks to 140nm gate patterning: Line width control improvements and design optimization,” in Proc. SPIE, 1998, vol. 3236, pp. 328-337. [41] M. Shibuya, “Resolution enhancement techniques for optical lithography and optical imaging theory,” Opt. Rev., vol. 4, no. 1B, pp. 151-160, Jan.1997. [42] T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature, vol. 406, pp. 1027-1031, Aug. 2000. [43] L. Liebmann, S. Mansfield, A. Wong, M. Lavin, W. Leipold, and T. Dunham, “TCAD/EDA development for lithography resolution enhancement,” IBM J. Res. Develop., vol. 45, pp. 651-665, Sep. 2001. [44] B. J. Lin,”The attenuated phase-shifting mask,” Solid State Tech., vol. 35, pp. 43-47, Jan. 1993. [45] H. Iwasaki, K. Hoshi, and H. Tanabe, “High transmittance rim-type attenuated phase shift masks for sub-0.2 mm hole patterns,” in Proc. SPIE, 1998, vol. 3412, pp. 601-608. [46] R. J. Socha, J. S. Petersen, F. Chen, T. Laidig, K. Wampler, and R. Caldwell, “Design of 200nm, 170nm, 140nm DUV contact sweeper high transmission attenuating phase shift mask through simulation part 1,” in Proc. SPIE, 1998, vol. 3546, pp. 617-640. [47] R. J. Socha, X. Shi, K Holmen, M. Dusa, W. Conley, J. S. Petersen, F. Chen, T. Laidig, K. Wampler, R. Caldwell, M. C. Chu, C. Su, K. Huang, C. Chen, F. Wang, C. Le, C. Pierrat, and B. Su, “Design of 200nm, 170nm, 140nm DUV contact sweeper high transmission attenuating phase shift mask: experimental results part 2,” in Proc. SPIE, 1999, vol. 3679, pp. 38-52. [48] N. Kachwala, J. S. Petersen, and M. McCallum, “High-transmission attenuated PSM: benefits and limitations through a validation study of 33%, 20%, and 6% transmission masks,” in Proc. SPIE, 2000, vol. 4000, pp. 1163-1174. [49] L. C. Choo, O. Park, M. J. Sack, and S. C. Tam, “Integration of attenuated phase shift mask to 0.13mm technology contact level masking process,” in Proc. SPIE, 2000, vol. 4000, pp. 1193-1202. [50] F. Schellenberg, M. D. Levenson, and P. J. Brock, “Optimization of real phase mask performance,” in Proc. SPIE, 1991, vol. 1604, pp. 274-296. [51] G. N. Watson, A Treatise on the Theory of Bessel Functions. Cambridge, England: Cambridge University Press, 1922, pp. 537-550. [52] M. Born and E. Wolf, Principles of Optics, 6th ed. Cambridge, England: Cambridge University Press, 1980, pp. 435-439. [53] G. W. Stroke, An Introduction to Coherent Optics and Holography, 2nd ed. New York: Academic Press, 1969, pp. 70-96. [54] J. W. Goodman, Introduction to Fourier Optics, 2nd ed. San Francisco: McGraw-Hill, 1996, pp. 232-236. [55] M. Mansuripur, The Physical Principles of Magneto-optical Recording. Cambridge, England: Cambridge University Press, 1995, pp. 78-82. [56] D. C. Cole, “Extending scalar aerial image calculations to higher numerical apertures,” J. Vac. Sci. Technol. B, vol. 8, pp. 3037-3041, Nov. 1990. [57] D. C. Cole, E. Barouch, U. Hollerbach, and S. A. Orszag, “Derivation and simulation of higher numerical aperture scalar aerial images,” Jpn. J. Appl. Phys. Part 1, vol. 31, no. 12B, pp. 4110-4119, Dec. 1992. [58] G. P. Tolstov, Fourier Series. New Jersey: Prentice-Hall, 1962, pp. 175-177. [59] J. Durnin and J. J. Miceli, Jr., “Diffraction-free beams,” Phys. Rev. Lett., vol. 58, pp. 1499-1501, Apr. 1987. [60] J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A, vol. 4, pp. 651-654, Apr. 1987. [61] G. Indebetouw, “Nondiffracting optical fields: some remarks on their analysis and synthesis,” J. Opt. Soc. Am. A, vol. 6, pp. 150-152, Jan. 1989. [62] H. Watanabe, “Modified mask for annular pupil filtering,” Jpn. J. Appl. Phys. Part 1, vol. 33, no. 12B, pp. 6831-6837, Dec. 1994. [63] H. Fukuda, Y. Kobayashi, K. Hama, T. Tawa, and S. Okazaki, “Evaluation of pupil-filtering in high-numerical aperture I-line lens,” Jpn. J. Appl. Phys. Part 1, vol. 32, no. 12B, pp. 5845-5849, Dec. 1993. [64] T. Terasawa, N. Hasegawa, T. Tabata, S. Katagari, and T. Kurosaki, “Improved resolution of an i-line stepper using a phase-shifting mask,” J. Vac. Sci. Technol. B, vol. 8, pp. 1300-1308, Nov. 1990. [65] A. Nitayama, T. Sato, K. Hasimoto, F. Shigenmitsu, and M. Nakase, “New phase shifting mask with self-aligned phase shifters for a quarter micron photolithography,” in Tech. Dig., Int. Electron Devices Mtg., 1989, pp. 57-60. [66] Y. Yanagishita, N. Ishiwata, Y. Tabata, K. Nakagawa, and K. Shigematsu, “Phase-shifting photolithography applicable to real IC patterns,” in Proc. SPIE, 1991, vol. 1463, pp. 207-217. [67] A. Otaka, Y. Kawai, and T. Matusda, “Hole pattern fabrication using halftone phase-shifting masks in KrF lithography,” Jpn. J. Appl. Phys. Part 1, vol. 32, no. 12B, pp. 5880-5886, Dec. 1993. [68] W. Maurer and D. Samuels, “Masks for 0.25-micron lithography,” in Proc. SPIE, 1994, vol. 2254, pp. 26-35. [69] W. Maurer, “Mask specifications for 193nm lithography,” in Proc. SPIE, 1996, vol. 2884, pp. 562-571. [70] J. W. Goodman, Statistical Optics. New York: John Wiley & Sons, 1985, pp. 303-307. [71] H. Shimizu, F. Uesawa, T. Oda, and M. Sugawara, “Experimental verification of an aerial image evaluation method and its application to studies of attenuated phase-shifting masks,” Jpn. J. Appl. Phys. Part 1, vol. 34, no. 12B, pp. 6598-6604, Dec. 1995. [72] A. Wong, R. Ferguson, L. Liebmann, S. Mansfield, A. Molless, and M. Neisser, “Lithographic effects of mask critical dimension error,” in Proc. SPIE, 1998, vol. 3334, pp. 106-116. [73] J. N. Randall and A. Tritchkov, “Optically induced mask critical dimension error magnification in 248nm lithography,” J. Vac. Sci. Technol. B, vol. 16, pp. 3606-3611, Nov. 1998. [74] J. van Schoot, J. Finders, K. van Ingen Schenau, M. Klaassen, and C. Bujik, “The mask error factor: Causes and implications for process latitude,” in Proc. SPIE, 1999, vol. 3679, pp. 250-260. [75] A. Wong, R. Ferguson, and S. Mansfield, “The mask error factor in optical lithography,” IEEE Trans. Semiconduct. Manufact., vol. 13, pp. 235-241, May 2000. [76] C. Mack, “Analytic approach to understanding the impact of mask errors on optical lithography,” in Proc. SPIE, 2000, vol. 4000, pp. 215-227. [77] T. Terasawa and N. Hasegawa, “Theoretical calculation of mask error enhancement factor for periodic pattern imaging,” Jpn. J. Appl. Phys. Part 1, vol. 39, no. 12B, pp. 6786-6791, Dec. 2000. [78] von F. Zernike, “Beugungstheorie des schneidenverfrahrens und seiner verbesserten form der phasenkontrastmethode,” (in Deutsch), Physica, 1, pp. 689-704, Apr. 1934. [79] S. N. Bezdid’ko, “The use of Zernike polynomials in optics,” Sov. J. Opt. Technol., vol. 41, pp. 58-62, Sep. 1974. [80] P. Dirksen, C. Juffermans, R. Pellens, M. Maenhoudt, and P. De Bisschop, “Novel aberration monitor for optical lithography,” in Proc. SPIE, 1999, vol. 3679, pp. 77-86. [81] P. Dirksen, C. Juffermans, A. Engelen, P. De Bisschop, and H. Muellerke, “Impact of high order aberrations on the performance of the aberration monitor,” in Proc. SPIE, 2000, vol. 4000, pp. 9-17. [82] F. Kalk, R. French, H. Alpay, and G. Hughes, “Cr-based attenuated embedded shifter pre-production,” in Proc. SPIE, 1994, vol. 2332, pp. 299-304. [83] Z. M. Ma and A. Andersson, “Preventing sidelobe printing in applying attenuated phase shift reticles,” in Proc. SPIE, 1998, vol. 3334, pp. 543-552. [84] I. B. Hur, J. H. Kim, I. H. Lee, H. E. Kim, C. N. Ahn, K. H. Baik, and S. H. Choi, “Effect of pattern density for contact windows in an attenuated phase shift mask,” in Proc. SPIE, 1995, vol. 2440, pp. 278-289. [85] M. D. Levenson, D. S. Goodman, S. Lindsey, P. W. Bayer, and H. A. E. Santini, “The phase-shifting mask II: Imaging simulations and submicrometer resist exposures,” IEEE Trans. Electron Devices, vol. ED-31, pp. 753-763, Jan.1984. [86] B. J. Lin, “The exposure-defocus forest,” Jpn. J. Appl. Phys. Part 1, vol. 33, no.12B, pp. 6756-6764, Dec. 1994. [87] K. Tsujita, J. Sakai, A. Nakae, S. Nakao, and W. Wakamiya, “Influence of aberration onperformance at use of resolution enhancement technology,” in Proc. SPIE, 1998, vol. 3334, pp. 855-866. [88] S. Nakao, A. Nakae, J. Sakai, T. Miura, S. Tatsu, K. Tsujita, and W. Wakamiya, “Measurement of spherical aberration utilizing an alternating phase shift mask,” Jpn. J. Appl. Phys. Part 1, vol. 37, pp. 5949-5955, Nov. 1998. [89] M. M. O’Toole and A. R. Neureuther, “The influence of partial coherence on projection printing,” in Proc. SPIE, 1979, vol. 174, pp. 22-27. [90] B. W. Smith, “Optics for photolithography,” in Microlithography, J. R. Sheats and B. W. Smith, Ed. New York: Marcel Dekker, 1998, pp. 197-202. [91] P. Luehrmann, P. van Oorschot, H. Jasper, S. Stalnaker, S. Brainerd, B. Rolfson, and L. Karklin, “0.35 mm lithography using off-axis illumination,” in Proc. SPIE, 1993, vol. 1927, pp. 103-124. [92] W. N. Partlo, P. J. Tompkins, P. G. Dewa, and P. F. Michaloski, “Depth of focus and resolution enhancement for I-line and deep-UV lithography using annular illumination,” in Proc. SPIE, 1993, vol. 1927, pp. 137-157. [93] C. Kittel, Introduction to solid state physics, 6th ed. New York: John Wiley & Sons, 1986, pp. 27-50. [94] B. W. Smith, L. Zavyalova, J. S. Petersen, “Illumination pupil filtering using modified quadrupole apertures,” in Proc. SPIE, 1998, vol. 3334, pp. 384-394. [95] C. C. Hsia, T. S. Gau, C. H. Yang, R. G. Liu, C. H. Chang, L. J. Chen, C. M. Wang, J. F. Chen, B. W. Smith, G. W. Hwang, J. W. Lay, and D. Y. Goang, “Customized off-axis illumination aperture filtering for sub-0.18mm KrF lithography,” in Proc. SPIE, 1999, vol. 3679, pp. 427-434. [96] T. S. Gau, R. G. Liu, C. K. Chen, C. M. Lai, F. J. Liang, and C. C. Hsia, “The customized illumination aperture filter for low k1 photolithography process,” in Proc. SPIE, 2000, vol. 4000, pp. 271-281. [97] M. Burkhardt, A. Yen, C. Progler, and G. Wells, “Illuminator design for the printing of regular contact pattern,” Microelectron. Eng., vol. 41, pp. 91-95, Mar. 1998. [98] A. E. Rosenbluth, S. Bukofsky, M. Hibbs, K. Lai, A. Molless, R. N. Singh, and A. Wong, “Optimum mask and source patterns to print a given shape,” in Proc. SPIE, 2001, vol. 4346, pp. 486-502. [99] A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. Molless, R. N. Singh, and A. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlith., Microfab., Microsyst., vol. 1, pp. 13-30, Apr. 2002. [100] B. J. Lin, “Phase-shifting and other challenges in optical mask technology,” in Proc. SPIE, 1990, vol. 1496, pp. 54-79. [101] T. Terasawa, N. Hasegawa, H. Fukuda, and S. Katagiri, “Imaging characteristics of multi-phase-shifting and halftone phase-shifting masks,” Jpn. J. Appl. Phys. Part 1, vol. 30, no. 11B, pp. 2991-2997, Nov. 1991.
|