(100.26.179.251) 您好!臺灣時間:2021/04/12 21:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周碩彥
研究生(外文):Shuo-Yen Chou
論文名稱:增加深次微米接觸窗微影製程聚焦深度的解析度增強技術
論文名稱(外文):The Resolution Enhancement Techniques for the Depth-of-focus Enhancement of Deep Sub-micron Contact Hole Patterning
指導教授:羅正忠羅正忠引用關係
指導教授(外文):Jen-Chung Lou
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:91
語文別:英文
論文頁數:107
中文關鍵詞:光學微影相位移光罩偏軸照明接觸窗聚焦深度變形照明濾光片深紫外光深次微米
外文關鍵詞:optical lithographyphase-shifting maskoff-axis illuminationcontact holedepth of focusmodified illumination aperture filterDUVdeep sub-micron
相關次數:
  • 被引用被引用:0
  • 點閱點閱:477
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:56
  • 收藏至我的研究室書目清單書目收藏:0
本論文敘述減光式相位移光罩之工作原理及其於實際製程運用上所碰到的問題並針對變形照明濾光片之設計提出一種名為「照明圖法」的新穎作圖法以便讓此二種解析度增強技術能有效整合於深次微米接觸窗層曝光製程上。文章內容主要分成三大部分。
第一部份(第二到第四章)是探討邊緣型減光式相位移光罩其增進聚焦深度之機制及在實際運用上所面臨的問題。經由將光軸方向上的成像光強分布以一連串的餘弦函數來近似藉以了解每一對繞涉光之干涉情況後,我們可以清楚的了解到具有對稱相位移圖案之光罩設計所以能增進聚焦深度的原因是由於其提供了破壞性干涉來平衡由於建設性干涉所造成的離焦光強減弱的現象。藉此我們導出一個簡單的方程式來表達邊緣型減光式相位移光罩其增進聚焦深度的能力。此方程式顯示聚焦深度之增長只與曝光波長(l)和投影透鏡之數值孔徑(NA)有關。由於增加照明角度會增長破壞性干涉在光軸方向之週期進而減弱其補償離焦光強的能力,因此增加光源之空間非同調度會減少聚焦深度改善。另一方面,在使用邊緣型減光式相位移光罩對密集接觸窗圖案進行曝光時,由於當缺少建設性干涉的緣故會使得側葉光強大於中央光強造成圖形轉移失敗,此推論意味著此種相位移方法只能運用於圖形週期大於 l/NA 之接觸窗圖案。在研究中發現極小的球面相差會對影像光強在最佳成像位置附近造成非常顯著的不對稱離焦行為,這是由於透鏡上面的相差會造成建設性干涉與破壞性干涉向不同離焦方向位移所致。上述分析經由0.17微米接觸窗曝光實驗得到證實。在實驗中,我們特別留意觀察光罩圖案週期對聚焦深度之影響進而闡明密集接觸窗與疏離接觸窗所需改善離焦容忍度機制之不同。
第二部份(第五章)介紹一個名為「照明圖法」的作圖方法來輔助分析光曈面上繞射光場分布與照明角度間的關係。一個照明圖是由許多圓圈組成﹔每個圓圈可視為光瞳投影在照明面上之影像而其圓心離原點的距離等於其所對應之繞設光繞射向量在光瞳面上投影的大小。藉由此作圖法,任意照明角度所造成的光瞳光場分布可以經由計算在照明圖上重疊的圓圈數目得到。照明圖上任兩相交圓之共弦表示可造成兩繞射光對光軸有相同繞設角度的光源位置,這是定義最佳偏軸照明位置的必要條件之一。照明圖法對有效光源位置的選擇極有助益。
最後,也是此論文最重要的部份(第六章),我們提出一個結合變形照明技術與邊緣型減光式相位移光罩的整合型解析度增強技術來輔助深次微米接觸窗層曝光製程。照明濾光片的設計目的在綜合所有光罩圖形之有效照明位置以補救減光式相位移光罩無法輔助密集接觸窗成像之缺點。為了在單一曝光中同時保有偏軸照射與同軸照射的優點,我們利用照明圖法得到使用能消去0階繞射光的光罩設計來曝出密集接觸窗的結論。另一方面,疏離接觸窗之曝光則需要具有相位移180度的0階繞射光的光罩設計使得其能於較高空間非同調度照明下仍能維持足夠的聚焦深度。我們將此整合型解析度增強技術運用在使用248奈米波長與0.55數值孔徑機台條件的0.17微米接觸窗曝光製程中。實驗結果不但證明此解析度增強技術可以同時改善所有圖形週期之聚焦深度,並且也顯示我們設計的變形照明結構可以降低由球面相差引起的最佳聚焦位置漂移問題。實驗結果顯示最小可解析之圖形週期可推進至0.39微米,同時可以得到一個離焦容忍度為0.63微米而能量寬容度為6%的矩形共同製程窗。

This thesis describes the working principles and implementation issues of the attenuated phase-shifting mask (PSM) and proposes an instructive graphic method named the illumination chart for customized illumination aperture filter (CIF) design such that these two resolution enhancement techniques (RETs) can be combined synergistically for deep sub-micron contact level printing. It is divided into three parts.
The first part of this text (chapter 2-4) discusses the enhancement mechanism and implementation issues of a rim-type attenuated PSM. The mechanism of focus latitude enhancement for contact/via hole printing is explained by approximating the axis intensity distribution of the image as a series of cosine functions to characterize the interference between each pair of diffraction beams. It is found a phase-shifting mask with symmetrical assisting features improves the depth of focus (DOF) by introducing the destructive interference to counterbalance the intensity attenuation from the constructive interference as defocus. A simple formula was derived to represent the capability of focus latitude enlargement. It shows the extent of enhancement depends on the exposure wavelength and the numerical aperture (NA) of the projection lens only. Increasing the degree of partial coherence degrades the focal range enlargement because a larger illumination angle elongates the destructive interference pattern in the optical-axis direction to weak its ability for intensity compensation. On the other hand, the lack of the constructive interference in dense hole imaging fails the mask pattern transfer, which limit the application of the phase-shifting method to pattern pitches greater than l/NA. A tiny amount of spherical aberration results in prominent asymmetrical defocus behavior because the wave deformation in the projection lens shifts the distribution of constructive and destructive interference patterns to opposite defocus directions. The printing characteristics of 0.17 mm contact hole using an 18%-transmission rim-type attenuated PSM are investigated to corroborate the above analysis. The dependence of DOF on the pattern duty is stressed to elucidate the difference in mechanisms of focus latitude improvement for sparse holes and periodic dense holes.
The second part of this work (chapter 5) introduces a novel graphic method named the illumination chart to give an aid for analyzing the effect of the illumination angle on the diffraction order distribution in the pupil. An illumination chart is composed of several disks; each of which can be regarded as the pupil image projected in the illumination plane with its center offset equal to the vector of a diffraction order. By this graphic method, the interference condition from a specific source position can be determined by counting the number of overlapping disks. The common chart of two overlapping disks represents the source positions to diffract the corresponding diffraction orders with equal propagation angles to the optical axis, which is the necessary condition for optimum off-axis illumination position determination. The illumination chart method is useful in effective source selections.
Finally, also the most important part of this work (chapter 6) presents a practical resolution enhancement technique that integrates the modified illumination technique and the rim-type attenuated PSM for deep sub-micron contact hole printing. A customized illumination aperture filter is synthesized by collecting effective source elements for every pattern pitch to remedy the inability of the attenuated PSM for dense patterns. To preserve the merits of off-axis illumination (OAI) to dense patterns and on-axis illumination to sparse patterns in a single exposure, the illumination chart suggests a zeroth-order-eliminated mask design for dense patterns. On the other hand, a zeroth-order-phase-shifted mask design is required to sustain enough DOF for sparse hole patterning under higher illumination incoherence. We applied this integrated RET to 0.17 mm contact hole printing using a 248 nm, 0.55 NA exposure system. The experimental results show our CIF illumination not only balance the DOF enhancement throughout the pattern pitches but also suppress the best focus shift from spherical aberration. The minimum pitch is pushed to 0.39 mm, and a common process window of 0.63 mm DOF at 6% exposure latitude is achieved.

Chapter 1 Introduction 1
1.1 Demands of Resolution Enhancement Techniques for Optical Lithography
1.2 Motivations
1.3 Thesis Outline
Chapter 2 Focus Latitude Enhancement Using Central-frequency Phase-shifting Method
2.1 Introduction
2.2 Image Formation in Projection Optics
2.3 Mechanism of Depth of Focus Enhancement
2.4 Realizing the Mechanism by Phase-Shifting Mask
2.5 Summary
Chapter 3 Implementation Issues of Central-frequency Phase-shifting Method
3.1 Introduction
3.2 Effect of Illumination Angles
3.3 Minimum Pitch Restriction
3.4 The Exaggerated Effect of Mask CD Error
3.4.1 Derivation of Image MEF for Hole Array Patterns
3.4.2 Mask Error Factor of a Rim-type PSM
3.5 Influence of Spherical Aberration
3.5.1 Asymmetric Through-focus Behavior
3.5.2 Focus Latitude Degradation
3.6 Summary
Chapter 4 High Transmission Rim-type Attenuated PSM for Deep Sub-micron Contact Hole Patterning
4.1 Introduction
4.2 Benefit of Using a High Transmission Rim-type Attenuated PSM
4.3 Test Mask Fabrications and Layout Designs
4.4 Printing Results and Discussions
4.4.1 Experimental Conditions
4.4.2 CD-defocus Characteristics of 0.17-mm Contact Hole Printing
4.4.3 Dependence of Hole Pitch and Illumination Type
4.5 Summary
Chapter 5 Illumination Chart Construction and Its Application
5.1 Introduction
5.2 Concept of the Illumination Chart Construction
5.3 Effective Source Selections for Hole Patterns
5.4 Summary
Chapter 6 Customized Illumination Aperture Filter Design for Through-pitch Focus Latitude Enhancement of Deep Sub-micron Contact Hole Patterning
6.1 Introduction
6.2 Illumination Aperture Filter Design for Contact Hole Patterning
6.3 Experiments
6.3.1 Experimental Conditions
6.3.2 Optimization of Illumination Aperture Filter Parameters
6.3.3 Through-pitch Performance of CIF Illumination
6.4 Summary
Chapter 7 Conclusions
7.1 Conclusions of This Thesis
7.2 Suggestions for Future Work
Bibliography

[1] P. Moller, “All-reflective 1:1 projection printing system,” in Proc. Reg. Tech. Conf. Photopolymers, 1973, pp. 56-65.
[2] J. D. Buckley, D. N. Galburt, and C. Karatzas, “Step-and-scan lithography using reduction optics,” J. Vac. Sci. Technol. B, vol. 7, pp. 1607-1612, Nov. 1989.
[3] I. M. Mackintosh, “Application of the scanning electron microscope to solid-state devices,” in Proc. IEEE, vol. 53, 1965, pp. 370-377.
[4] R. F. M. Thornley and T. Sun, “Electron beam exposure of photoresists,” J. Electrochem. Soc., vol.112, pp. 1151-1153, 1965.
[5] D. L. Spears and H. I. Smith, “High-resolution pattern replication using soft x-rays,” Electron. Lett., vol. 8 , pp. 102-104, 1972.
[6] K. Jain, C. G. Willson, and B. J. Lin, “Ultrafast deep UV lithography with excimer lasers,” IEEE Electron Device Lett., vol. EDL-3, pp. 53-55 , Mar. 1982.
[7] Industrial Affiliation Program (IIAP): 157nm optical lithography. IMEC, Belgium [Online]. Available: http://www.imec.be/wwwinter/business/157nm.pdf
[8] H. Hopkins, “On the diffraction theory of optical images,” Proc. R. Soc. London Ser. A, vol. 217, pp. 408-432, May 1953.
[9] M. Born and E. Wolf, Principles of Optics, 6th ed. Cambridge, England: Cambridge University Press, 1980, pp. 441.
[10] T. A. Brunner, “Pushing the limits of lithography for IC production,” in Tech. Dig., Int. Electron Devices Mtg., 1997, pp.9-13.
[11] B. Davari, C. W. Koburger, R. Schulz, J. D. Warnock, T. Furukawa, M. Jost, Y. Taur, W. G. Schwittek, J. K. DeBrosse, M. L. Kerbaugh, J. L. Mauer, “A new planarization technique, using a combination of RIE and chemical mechanical polish (CMP),” in Tech. Dig., Int. Electron Devices Mtg., 1989, pp.61-64.
[12] C. A. Mack, “Optimum stepper performance through image manipulation,” in Proc. KTI Microelectronics Seminar Interface ’89, 1989, pp. 209-215.
[13] D. L. Fehrs, H. B. Lovering, and R. T. Scruton, “Illuminator modification of an optical aligner,” in Proc. KTI Microelectronics Seminar Interface ’89, 1989, pp. 217-230.
[14] M. Noguchi, M. Muraki, Y. Iwasaki, and A. Suzuki, “Subhalf micron lithography system with phase-shifting effect,” in Proc. SPIE, 1992, vol. 1674, pp. 92-104.
[15] N. Shiraishi, S. Hirukawa, Y. Takeuchi, and N. Magome, “New imaging technique for 64M-DRAM,” in Proc. SPIE, 1992, vol. 1674, pp. 741-752.
[16] K. Tounai, H. Tanabe, H. Nozue, and K. Kasama, “Resolution improvement with annular illumination,” in Proc. SPIE, 1992, vol. 1674, pp. 753-764.
[17] M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices, vol. ED-29, pp. 1828-1846, Dec. 1982.
[18] M. Shibuya, Japan patent 62-50811, No. 1441789 (in Japanese).
[19] T. E. Jewell, J. H. Bennewitz, V. Pol and R. Cirelli, “0.25 um periodic structures for lightwave technology fabricated by spatial frequency doubling lithography (SFDL),” in Proc. SPIE, 1989, vol. 1088, pp. 496-503.
[20] H. Fukuda, T. Terasawa, and S. Okazaki, “Spatial filtering for depth of focus and resolution enhancement in optical lithography,” J. Vac. Sci. Technol. B, vol. 9, pp. 3113-3116, Nov. 1991.
[21] S. Inoue, T. Fujisawa, S. Tamaushi, and Y. Ogawa, “Optimization of partially coherent optical system for optical lithography,” J. Vac. Sci. Technol. B, vol. 10, pp. 3004-3007, Nov. 1992.
[22] R. von Bunau, G. Owen, and R. F. W. Pease, “ Depth of focus enhancement in optical lithography,” J. Vac. Sci. Technol. B, vol. 10, pp. 3047-3054, Nov. 1992.
[23] K. Matsumoto, N. Shiraishi, Y. Takeuchi, and S. Hirukawa, “Innovative image formation: coherency controlled imaging,” in Proc. SPIE, 1994, vol. 2197, pp. 844-853.
[24] H. Fukuda, N. Hasegawa, T. Tanaka, and T. Hayashida, IEEE Electron Device Lett., vol. EDL-8, pp. 179-180, Apr. 1987.
[25] H. Fukuda, N. Hasegawa, and S. Okazaki, “Improvement of defocus tolerance in a half-micron optical lithography by the focus latitude enhancement exposure method: simulation and experiment,” J. Vac. Sci. Technol. B, vol. 7, pp. 667-674, Jul. 1989.
[26] M. Shibuya, T. Ozawa, M. Komatsu, and H. Ooki, “Performance of Resolution Enhancement Technique Using Both Multiple Exposure and Nonlinear Resist,” Jpn. J. Appl. Phys., Part I, vol. 33, no. 12B, pp. 6874-6877, Dec. 1994.
[27] S. Asai, I. Hanyu, and M. Takikawa, “Resolution Limit for Optical Lithography Using Polarized Light Illumination,” Jpn. J. Appl. Phys., Part 1, vol. 32, no. 12B, pp. 5863-5866, Dec. 1993.
[28] S. Matsuo, K. Komatsu, Y. Takeuchi, E. Tamechika, Y. Mimura, and K. Harada, “High resolution optical lithography system using oblique incidence illumination,” in Tech. Dig., Int. Electron Devices Mtg., 1991, pp. 970-972.
[29] M. Noguchi, Y. Yoshitake, and Y. Kembo, “Resolution enhancement of stepper by complementary conjugate spatial filter,” in Proc. SPIE, 1992, vol. 1674, pp. 662-668.
[30] Y. Takeuchi, S. Matsu, E. Tamechika, and K. Harada, “Analytical method for image characteristics of annular illumination with a spatial filter in optical projection lithography,” Jpn. J. Appl. Phys., Part 1, vol. 31, no. 12B, pp. 4120-4125, Dec. 1992.
[31] H. Fukuda and R. Yamanaka, “A new pupil filter for annular illumination in optical lithography,” Jpn. J. Appl. Phys., Part 1, vol. 31, no. 12B, pp. 4126-4130, Dec. 1992.
[32] S. Orii, and T. Sekino, “Performance of dipole illumination combined with pupil filter,” Jpn. J. Appl. Phys., Part 1, vol. 33, no. 12B, pp. 6855-6862, Dec. 1994.
[33] K. Kamon, T. Miyamoto, Y. Myoi, H. Nagata, M. Tanaka, and K. Horie, ”Photolithography system using annular illumination,” Jpn. J. Appl. Phys., Part 1, vol. 30, no. 11B, pp. 3021-3029, Nov. 1991.
[34] K. Kamon, T. Miyamoto, Y. Myoi, H. Nagata, N. Kotani and M. Tanaka, “Photolithography system using a combination of modified illumination and phase shifting mask,” Jpn. J. Appl. Phys., Part 1, vol. 31, no, 12B, pp. 4131-4136, Dec. 1992.
[35] T. A. Brunner, “Rim phase-shift mask combined with off-axis illumination: a path to 0.5l/numerical aperture geometries,” Opt. Eng., vol. 32, pp. 2337-2343, Oct 1993.
[36] T. Ogawa, M. Uematsu, F. Uematsu, M. Kimura, H. Shimizu, and T. Oda, “Sub-quarter micron optical lithography with practical super resolution technique,” in Proc. SPIE, 1995, vol. 2440, pp. 772-783.
[37] T. Ogawa, M. Uematsu, K. Takeuchi, A. Sekiguchi, and T. Oda, “Challenges to depth-of-focus enhancement with a practical super-resolution technique,” in Proc. SPIE, 1996, vol. 2726, pp. 34-45.
[38] A. K. Wong, Resolution Enhancement Techniques in Optical Lithography, Bellingham, Washington: SPIE Press, 2001, pp. 91-115.
[39] International Technology Roadmap for Semiconductors, 2001 ed., International SEMATECH [Online]. Available: http://public.itrs.net/files/2001ITRS/litho.pdf
[40] H. Y. Liu, L. Karklin, Y. T. Wang, and Y. C. Pati, “The application of alternating phase-shifting masks to 140nm gate patterning: Line width control improvements and design optimization,” in Proc. SPIE, 1998, vol. 3236, pp. 328-337.
[41] M. Shibuya, “Resolution enhancement techniques for optical lithography and optical imaging theory,” Opt. Rev., vol. 4, no. 1B, pp. 151-160, Jan.1997.
[42] T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature, vol. 406, pp. 1027-1031, Aug. 2000.
[43] L. Liebmann, S. Mansfield, A. Wong, M. Lavin, W. Leipold, and T. Dunham, “TCAD/EDA development for lithography resolution enhancement,” IBM J. Res. Develop., vol. 45, pp. 651-665, Sep. 2001.
[44] B. J. Lin,”The attenuated phase-shifting mask,” Solid State Tech., vol. 35, pp. 43-47, Jan. 1993.
[45] H. Iwasaki, K. Hoshi, and H. Tanabe, “High transmittance rim-type attenuated phase shift masks for sub-0.2 mm hole patterns,” in Proc. SPIE, 1998, vol. 3412, pp. 601-608.
[46] R. J. Socha, J. S. Petersen, F. Chen, T. Laidig, K. Wampler, and R. Caldwell, “Design of 200nm, 170nm, 140nm DUV contact sweeper high transmission attenuating phase shift mask through simulation part 1,” in Proc. SPIE, 1998, vol. 3546, pp. 617-640.
[47] R. J. Socha, X. Shi, K Holmen, M. Dusa, W. Conley, J. S. Petersen, F. Chen, T. Laidig, K. Wampler, R. Caldwell, M. C. Chu, C. Su, K. Huang, C. Chen, F. Wang, C. Le, C. Pierrat, and B. Su, “Design of 200nm, 170nm, 140nm DUV contact sweeper high transmission attenuating phase shift mask: experimental results part 2,” in Proc. SPIE, 1999, vol. 3679, pp. 38-52.
[48] N. Kachwala, J. S. Petersen, and M. McCallum, “High-transmission attenuated PSM: benefits and limitations through a validation study of 33%, 20%, and 6% transmission masks,” in Proc. SPIE, 2000, vol. 4000, pp. 1163-1174.
[49] L. C. Choo, O. Park, M. J. Sack, and S. C. Tam, “Integration of attenuated phase shift mask to 0.13mm technology contact level masking process,” in Proc. SPIE, 2000, vol. 4000, pp. 1193-1202.
[50] F. Schellenberg, M. D. Levenson, and P. J. Brock, “Optimization of real phase mask performance,” in Proc. SPIE, 1991, vol. 1604, pp. 274-296.
[51] G. N. Watson, A Treatise on the Theory of Bessel Functions. Cambridge, England: Cambridge University Press, 1922, pp. 537-550.
[52] M. Born and E. Wolf, Principles of Optics, 6th ed. Cambridge, England: Cambridge University Press, 1980, pp. 435-439.
[53] G. W. Stroke, An Introduction to Coherent Optics and Holography, 2nd ed. New York: Academic Press, 1969, pp. 70-96.
[54] J. W. Goodman, Introduction to Fourier Optics, 2nd ed. San Francisco: McGraw-Hill, 1996, pp. 232-236.
[55] M. Mansuripur, The Physical Principles of Magneto-optical Recording. Cambridge, England: Cambridge University Press, 1995, pp. 78-82.
[56] D. C. Cole, “Extending scalar aerial image calculations to higher numerical apertures,” J. Vac. Sci. Technol. B, vol. 8, pp. 3037-3041, Nov. 1990.
[57] D. C. Cole, E. Barouch, U. Hollerbach, and S. A. Orszag, “Derivation and simulation of higher numerical aperture scalar aerial images,” Jpn. J. Appl. Phys. Part 1, vol. 31, no. 12B, pp. 4110-4119, Dec. 1992.
[58] G. P. Tolstov, Fourier Series. New Jersey: Prentice-Hall, 1962, pp. 175-177.
[59] J. Durnin and J. J. Miceli, Jr., “Diffraction-free beams,” Phys. Rev. Lett., vol. 58, pp. 1499-1501, Apr. 1987.
[60] J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A, vol. 4, pp. 651-654, Apr. 1987.
[61] G. Indebetouw, “Nondiffracting optical fields: some remarks on their analysis and synthesis,” J. Opt. Soc. Am. A, vol. 6, pp. 150-152, Jan. 1989.
[62] H. Watanabe, “Modified mask for annular pupil filtering,” Jpn. J. Appl. Phys. Part 1, vol. 33, no. 12B, pp. 6831-6837, Dec. 1994.
[63] H. Fukuda, Y. Kobayashi, K. Hama, T. Tawa, and S. Okazaki, “Evaluation of pupil-filtering in high-numerical aperture I-line lens,” Jpn. J. Appl. Phys. Part 1, vol. 32, no. 12B, pp. 5845-5849, Dec. 1993.
[64] T. Terasawa, N. Hasegawa, T. Tabata, S. Katagari, and T. Kurosaki, “Improved resolution of an i-line stepper using a phase-shifting mask,” J. Vac. Sci. Technol. B, vol. 8, pp. 1300-1308, Nov. 1990.
[65] A. Nitayama, T. Sato, K. Hasimoto, F. Shigenmitsu, and M. Nakase, “New phase shifting mask with self-aligned phase shifters for a quarter micron photolithography,” in Tech. Dig., Int. Electron Devices Mtg., 1989, pp. 57-60.
[66] Y. Yanagishita, N. Ishiwata, Y. Tabata, K. Nakagawa, and K. Shigematsu, “Phase-shifting photolithography applicable to real IC patterns,” in Proc. SPIE, 1991, vol. 1463, pp. 207-217.
[67] A. Otaka, Y. Kawai, and T. Matusda, “Hole pattern fabrication using halftone phase-shifting masks in KrF lithography,” Jpn. J. Appl. Phys. Part 1, vol. 32, no. 12B, pp. 5880-5886, Dec. 1993.
[68] W. Maurer and D. Samuels, “Masks for 0.25-micron lithography,” in Proc. SPIE, 1994, vol. 2254, pp. 26-35.
[69] W. Maurer, “Mask specifications for 193nm lithography,” in Proc. SPIE, 1996, vol. 2884, pp. 562-571.
[70] J. W. Goodman, Statistical Optics. New York: John Wiley & Sons, 1985, pp. 303-307.
[71] H. Shimizu, F. Uesawa, T. Oda, and M. Sugawara, “Experimental verification of an aerial image evaluation method and its application to studies of attenuated phase-shifting masks,” Jpn. J. Appl. Phys. Part 1, vol. 34, no. 12B, pp. 6598-6604, Dec. 1995.
[72] A. Wong, R. Ferguson, L. Liebmann, S. Mansfield, A. Molless, and M. Neisser, “Lithographic effects of mask critical dimension error,” in Proc. SPIE, 1998, vol. 3334, pp. 106-116.
[73] J. N. Randall and A. Tritchkov, “Optically induced mask critical dimension error magnification in 248nm lithography,” J. Vac. Sci. Technol. B, vol. 16, pp. 3606-3611, Nov. 1998.
[74] J. van Schoot, J. Finders, K. van Ingen Schenau, M. Klaassen, and C. Bujik, “The mask error factor: Causes and implications for process latitude,” in Proc. SPIE, 1999, vol. 3679, pp. 250-260.
[75] A. Wong, R. Ferguson, and S. Mansfield, “The mask error factor in optical lithography,” IEEE Trans. Semiconduct. Manufact., vol. 13, pp. 235-241, May 2000.
[76] C. Mack, “Analytic approach to understanding the impact of mask errors on optical lithography,” in Proc. SPIE, 2000, vol. 4000, pp. 215-227.
[77] T. Terasawa and N. Hasegawa, “Theoretical calculation of mask error enhancement factor for periodic pattern imaging,” Jpn. J. Appl. Phys. Part 1, vol. 39, no. 12B, pp. 6786-6791, Dec. 2000.
[78] von F. Zernike, “Beugungstheorie des schneidenverfrahrens und seiner verbesserten form der phasenkontrastmethode,” (in Deutsch), Physica, 1, pp. 689-704, Apr. 1934.
[79] S. N. Bezdid’ko, “The use of Zernike polynomials in optics,” Sov. J. Opt. Technol., vol. 41, pp. 58-62, Sep. 1974.
[80] P. Dirksen, C. Juffermans, R. Pellens, M. Maenhoudt, and P. De Bisschop, “Novel aberration monitor for optical lithography,” in Proc. SPIE, 1999, vol. 3679, pp. 77-86.
[81] P. Dirksen, C. Juffermans, A. Engelen, P. De Bisschop, and H. Muellerke, “Impact of high order aberrations on the performance of the aberration monitor,” in Proc. SPIE, 2000, vol. 4000, pp. 9-17.
[82] F. Kalk, R. French, H. Alpay, and G. Hughes, “Cr-based attenuated embedded shifter pre-production,” in Proc. SPIE, 1994, vol. 2332, pp. 299-304.
[83] Z. M. Ma and A. Andersson, “Preventing sidelobe printing in applying attenuated phase shift reticles,” in Proc. SPIE, 1998, vol. 3334, pp. 543-552.
[84] I. B. Hur, J. H. Kim, I. H. Lee, H. E. Kim, C. N. Ahn, K. H. Baik, and S. H. Choi, “Effect of pattern density for contact windows in an attenuated phase shift mask,” in Proc. SPIE, 1995, vol. 2440, pp. 278-289.
[85] M. D. Levenson, D. S. Goodman, S. Lindsey, P. W. Bayer, and H. A. E. Santini, “The phase-shifting mask II: Imaging simulations and submicrometer resist exposures,” IEEE Trans. Electron Devices, vol. ED-31, pp. 753-763, Jan.1984.
[86] B. J. Lin, “The exposure-defocus forest,” Jpn. J. Appl. Phys. Part 1, vol. 33, no.12B, pp. 6756-6764, Dec. 1994.
[87] K. Tsujita, J. Sakai, A. Nakae, S. Nakao, and W. Wakamiya, “Influence of aberration onperformance at use of resolution enhancement technology,” in Proc. SPIE, 1998, vol. 3334, pp. 855-866.
[88] S. Nakao, A. Nakae, J. Sakai, T. Miura, S. Tatsu, K. Tsujita, and W. Wakamiya, “Measurement of spherical aberration utilizing an alternating phase shift mask,” Jpn. J. Appl. Phys. Part 1, vol. 37, pp. 5949-5955, Nov. 1998.
[89] M. M. O’Toole and A. R. Neureuther, “The influence of partial coherence on projection printing,” in Proc. SPIE, 1979, vol. 174, pp. 22-27.
[90] B. W. Smith, “Optics for photolithography,” in Microlithography, J. R. Sheats and B. W. Smith, Ed. New York: Marcel Dekker, 1998, pp. 197-202.
[91] P. Luehrmann, P. van Oorschot, H. Jasper, S. Stalnaker, S. Brainerd, B. Rolfson, and L. Karklin, “0.35 mm lithography using off-axis illumination,” in Proc. SPIE, 1993, vol. 1927, pp. 103-124.
[92] W. N. Partlo, P. J. Tompkins, P. G. Dewa, and P. F. Michaloski, “Depth of focus and resolution enhancement for I-line and deep-UV lithography using annular illumination,” in Proc. SPIE, 1993, vol. 1927, pp. 137-157.
[93] C. Kittel, Introduction to solid state physics, 6th ed. New York: John Wiley & Sons, 1986, pp. 27-50.
[94] B. W. Smith, L. Zavyalova, J. S. Petersen, “Illumination pupil filtering using modified quadrupole apertures,” in Proc. SPIE, 1998, vol. 3334, pp. 384-394.
[95] C. C. Hsia, T. S. Gau, C. H. Yang, R. G. Liu, C. H. Chang, L. J. Chen, C. M. Wang, J. F. Chen, B. W. Smith, G. W. Hwang, J. W. Lay, and D. Y. Goang, “Customized off-axis illumination aperture filtering for sub-0.18mm KrF lithography,” in Proc. SPIE, 1999, vol. 3679, pp. 427-434.
[96] T. S. Gau, R. G. Liu, C. K. Chen, C. M. Lai, F. J. Liang, and C. C. Hsia, “The customized illumination aperture filter for low k1 photolithography process,” in Proc. SPIE, 2000, vol. 4000, pp. 271-281.
[97] M. Burkhardt, A. Yen, C. Progler, and G. Wells, “Illuminator design for the printing of regular contact pattern,” Microelectron. Eng., vol. 41, pp. 91-95, Mar. 1998.
[98] A. E. Rosenbluth, S. Bukofsky, M. Hibbs, K. Lai, A. Molless, R. N. Singh, and A. Wong, “Optimum mask and source patterns to print a given shape,” in Proc. SPIE, 2001, vol. 4346, pp. 486-502.
[99] A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. Molless, R. N. Singh, and A. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlith., Microfab., Microsyst., vol. 1, pp. 13-30, Apr. 2002.
[100] B. J. Lin, “Phase-shifting and other challenges in optical mask technology,” in Proc. SPIE, 1990, vol. 1496, pp. 54-79.
[101] T. Terasawa, N. Hasegawa, H. Fukuda, and S. Katagiri, “Imaging characteristics of multi-phase-shifting and halftone phase-shifting masks,” Jpn. J. Appl. Phys. Part 1, vol. 30, no. 11B, pp. 2991-2997, Nov. 1991.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔