|
References [1] R. Singh, “Important role of dielectrics in bringing second electronic revolution in the twenty first century,” in Proc. Electrochemical Society 3rd international Symposium on Low and High Dielectric Constant Materials, vol. 98-3, 1998, pp. 1-17. [2] T. Ohba, “Material and process challenges in 100nm interconnects module technology and beyond,” J. Electro. Mater., vol. 30, no. 4, pp. 314-319, 2001. [3] B. Roberts, A. Harrus and R. L. Jackson, “Interconnect metallization for future device generations,” Solid State Technology, Feb. pp. 69-78, 1995. [4] M. Brillouet, “Multilevel interconnection technologies and future requirements for logic applications,” Microelectronic Engineering, vol. 37-38, pp. 5-13, 1997. [5] S. H. Liu, E. Tolentino, Y. Lim, E. Tolentino and A. Koo, “Advanced metrology for rapid characterization of the thermal mechanical properties of low k dielectric and copper thin film,” J. Electro. Mater., vol. 30, no. 4, pp. 299-303, 2001. [6] M. Vogt, M. Kachel, M. Plotner and K. Drescher, “Dielectric barriers for Cu metallization systems,” Microelectronic Engineering, vol. 37-38, pp. 181-187, 1997. [7] T. Schiml et al., “A 0.13 um CMOS platform with Cu/low k interconnects for system on chip application,” in Symp. VLSI Technol. Dig., 2001, pp. 101-102. [8] M. Armacost, A. Augustin, P. Felsner, Y. Feng, G. Friese, J. Heidenreich, G. Hueckel, O. Prigge and K. Stein, “A high reliability metal insulator metal capacitor for 0.18μm copper technology,” in IEDM Tech. Dig., 2000, pp. 157-160. [9] B. Y. Tsui, K. L. Fang and S. E. Lee, “Electrical instability of low-dielectric constant diffusion barrier film (a-SiC: H) for copper interconnect,” IEEE Transactions on Electron Devices, vol. 48, no. 10, pp. 2375-2383, 2001. [10] M. Fayolle, G. Passemard, M. Assous, D. Louis, A. Beverina, Y. Gobil, J. Cluzel and L. Arnaud, “Integration of copper with an organic low-k dielectric in 0.12-um node interconnect,” Microelectronic Engineering, vol. 60, pp. 119-124, 2002. [11] G. Passemard, O. Demolliens, Ch. Lecornec, P. Noel, JC. Maisonobe, P. Motte, J. Palleau, F. Pires, L. Ravel, J. Torres and F. Vinet, “Single damascene integration of BCB with copper,” in proc. VLSI Multilevel Interconnection Conference (VMIC), 1998, pp. 63-68. [12] J. Ida, M. Yoshimaru, T. Usami, A. Ohtomo, K. Shimokawa, A. Kita and M. Ino, “Reduction of wiring capacitance with low dielectric SiOF interlayer film for high speed/low power sub-half micron CMOS,” in Proc. Symp. VLSI Technol. Dig., 1994, pp. 59-62. [13] M. H. Jo and H. H. Park, “Leakage current and dielectric breakdown behavior in annealed SiO2 aerogel films,” Applied Physics Letters, vol. 72, no. 11, pp. 1391-1393, 1998. [14] X. W. Lin and D. Pramanik, “Future interconnect technologies and copper metallization,” Solid State Technol., pp. 3-79, Oct. 1998. [15] R. Manepalli, K. D. Farnsworth, S. A. Bidstrup Allen and P. A. Kohl, “Multilayer electron-beam curing of polymer dielectric for electrical interconnections,” Electrochemical and Solid-state letter, vol.3, no. 5, pp. 228-231, 2000. [16] J. Goo, B. K. Hwang, J. H. Choi, U. I. Chung and Y. B. Koh, “Reliable and simple Non-etch back process for inter-metal dielectric (IMD) of 256M DRAM using spin-on hydrogen silsesquioxane,” in proc. Int. Dielectrics for ULSI Multilevel Interconnection Conference, 1997, pp. 329-332. [17] R. Swope, W. S. Yoo, J. Hsieh and H. te Nijenhuis, “Nitrous oxide plasma surface treatment of PECVD FSG films,” in proc. Int. Dielectrics for ULSI Multilevel Interconnection Conference, 1996, pp. 295-301. [18] Y. Shimogaki, S. W. Lim, Y. Nakano, K. Tada and H. Komiyama, “The contribution on Si-O vibration modes to the dielectric constant of SiO2:F film,” in proc. Int. Dielectrics for ULSI Multilevel Interconnection Conference, 1996, pp. 36-43. [19] Y. Liu, K. Chung, C. Saha, H. C. Liou, M. Spaulding, J. Pretzer and J. Bremmer, “Advance cure processing of hydrogen silsesquioxane for low dielectric constant,” in proc. Int. Dielectrics for ULSI Multilevel Interconnection Conference, 1998, pp. 155-158. [20] S. W. Lim, Y. Shimogaki, Y. Nakano, K. Tada and H. Komiyama, “preparation of low dielectric constant F-doped SiO2 films by plasma enhanced chemical vapor deposition,” Applied. Physics Letters., vol. 68, no. 6, pp. 832-834, 1996. [21] T. Homma and Y. Murao, “A new interlayer dielectric film formation technology using room temperature flow CVD,” in proc. VLSI Multilevel Interconnection Conference (VMIC), 1993, pp. 71-77. [22] A. Verma, T. Guo, B. Cohen, H. Tran, P. Lee, R. Mosely and B. Nguyen, “Process integration of low dielectric constant fluorine doped PECVD silicon oxide thin film interconnect metallization,” in proc. VLSI Multilevel Interconnection Conference (VMIC), 1995, pp. 141-143. [23] T. Shiraffuji, M. Sawada, Y. Nakagami, Y. Hayashi and S. Nishino, “PECVD of F-doped SiO2 thin films using tetraisocyanatesilane and tetrafluorosilane,” in Proc. Mat. Res. Soc. Symp., 1997, pp. 137-142. [24] S. Lee, J. Y. Yoo and J. W. Park, “The thermal stability of fluorine doped silicon oxide films formed by ECRCVD with SiF4 and O2 gases,” in Proc. Mat. Res. Soc. Symp., 1997, pp. 119-125. [25] J. P. Sullivan, D. R. Denison, J. C. Barbour, P. P. Newcomer, C. A. Apblett, C. H. Seager and A. G. Baca, “Thermal stability of fluorinated SiO2 films: effects of hydration and film-substrate interaction,” in Proc. Mat. Res. Soc. Symp., 1997, pp. 149-154. [26] Richard A. Swalin, Thermodynamics of solids, 2nd ed., New York, Wiley, 1972, pp. 302. [27] Y. J. Mei, T. C. Chang, S. J. Chang, F. M. Pan, M. S. K. Chen, A. Tuan, S. Chou and C. Y. Chang, “Stabilizing dielectric constant of fluorine-doped SiO2 film by N2O and NH3 plasma post-treatment,” Thin Solid Film, vol. 308-309, pp. 501-506, 1997. [28] D. Martini, R. Sutcliffe and J. Kelber “MOCVD of Cu on teflon-AF and alumina-modified teflon-AF,” in proc. Mater. Res. Soc. Symp., vol. 476, 1997, pp. 61-67. [29] N. H. Hendricks, K. S. Y. Lau, A. R. Smith and W. B. Wan, “Synthesis and characterization of fluorinated poly arylethers: organic polymers for IC IMD,” in proc. Mater. Res. Soc. Symp., vol. 381, 1995, pp. 59-70. [30] M. Harker, I. Banerjee, L. Wong and P. A. Coon, “Characterization of CVD deposited amorphous fluorocarbons for low k interlayer dielectrics,” in proc. 3th Symp. On Low and High Dielectric Constant Materials, vol. 98-3, 1998, pp. 50-66. [31] T. E. Seidel and C. H. Ting, “Methods and needs for low k material research,” in Proc. Mater. Res. Soc. Symp., vol. 381, 1995, pp. 3-17. [32] S. Q. Wang and B. Zhao, “Gap fill dependence of fluorinated polyimide films on solid content, adhesion promoter, spin dwell time, and solvent spray,” J. Vac. Sci. Technol. B, vol. 14, no. 4, pp. 2656-2659, 1996. [33] R. N. Vrtis, K. A. Heap, W. F. Burgoyne and L. M. Robeson, “Poly (arylene ether) s as low dielectric constant material for ULSI interconnect application,” in Proc. VLSI Multilevel Interconnect Conference (VMIC), 1997, pp. 620-622. [34] S. Bothra, M. Kellam and P. Garrou, “BCB as an interlevel dielectric in a multilevel metal system,” in proc. Int. VLSI Multilevel Interconnection Conf., Santa Clara, June 1993, pp. 131-134. [35] F. Kuchenmeister, U. Schubert and C. Wenzel, “ SILK dielectric planarization by chemical mechanical polishing,” Microelectronic Engineering, vol. 50, pp. 47-52, 2000. [36] J. Cluzel, F. Mondon, Y. Loquest, Y. Morand and G.. Reimbold, “Electrical characterization of low permittivity materials for ULSI inter-metal-insulation,” Microelectronics Reliability, vol. 40, pp. 675-678, 2000. [37] V. McGayay, A. Acovic, B. Argarwala, G. Endicott, M. Shapiro and S. Yankee, “Process integration and reliability of hydrogen silsesquioxane in direct-on-metal application,” in Proc. Int. VLSI Multilevel Interconnection Conf., 1996, pp. 116-118. [38] H. Meynen, R. Uttecht, T. Gao, M. Van Hove, S. Vanhaelemeersch and K. Maex, “The integration of low k hydrogen silsesquioxane (HSQ) in sub 0.35 um processes,” in Proc. Electrochemical Society 3rd international Symposium on Low and High Dielectric Constant Materials, vol. 98-3, 1998, pp. 29-42. [39] T. C. Chang, P. T. Liu, F. Y. Shih and S. M. Sze, “Effect of hydrogen on electrical and chemical properties of low-k hydrogen silsesquioxane as an intermetal dielectric for nonetchback process,” Electrochemical and Solid-State Letters., vol. 2, no. 8, pp. 390-392, 1999. [40] Yvete Toivola, Jeremy Thurn and Robert F. Cook, “Structural, electrical, and mechanical properties development during curing of low-k hydrogen silsesquioxane films,” J. Electrochemical Society, vol. 149, pp. F9-F17, 2002. [41] N. H. Hendricks, “Low dielectric constant materials for IC inter-metal dielectric applications: a status report on the leading candidates,” in Proc. Mater. Res. Soc. Symp., vol. 443, 1997, pp. 3-14. [42] C. T. Chua, G. Sarkar and X. Hu, “In situ characterization of methylsilsesquioxane curing,” J. Electrochemical Society, vol. 145, pp. 4007-4011, 1998. [43] A. T. Kohl, R. Mimna, R. Shick, L. Rhodes, Z. L. Wang and P. A. Kohl, “Low k, porous methyl silsesquioxane and spin-on-glass,” Electrochemical and Solid-State Letters, vol. 2, pp. 77-79, 1999. [44] J. Waeterloos, H. Meynen, B. Coenegrachts, J. Grillaert and L. Vanden Hove, “Low k organic spin-on materials in a non-etchback interconnect strategy,” in Proc. Int. Dielectrics for ULSI Multilevel Interconnection Conf., 1996, pp. 52-60. [45] Allied Signal Advanced Materials, Accuspin 418 Flowable Spin-on Polymer (SOP), Product bulletin, Sunnyvale, CA (1996). [46] T. C. Chang, P. T. Liu, Y. J. Mei, Y. S. Mor, T. H. Perng, Y. L. Yang and S. M. Sze, “Effects of H2 plasma treatment on low dielectric constant methylsilsesquioxane,” J. Vac. Sci. Technol. B, vol. 17, no. 5, pp. 2325-2330, 1999. [47] International Technology Roadmap for Semiconductors (ITRS), Santa Clara, CA, November, 2001. [48] B. P. Gorman, R. A. Orozco-Teran, J. A. Roepsch, H. Dong and R. F. Reidy, and D. W. Mueller, “High strength, low dielectric constant fluorinated silica xerogel films,” Appl. Phys. Lett., vol. 79, no. 24, pp. 4010-4012, 2001. [49] A. Jain, S. Rogojevic, S. Ponoth, N. Agarwal, I. Matthew, W. N. Gill, P. Persans, M. Tomozawa, J. L. Plawsky and E. Simonyi, “Porous silica materials as low-k dielectrics for electronic and optical interconnects,” Thin Solid Film, vol. 398-399, pp. 513-522, 2001. [50] F. Lanckmans and K. Maex, “Use of a capacitance voltage technique to study copper drift diffusion in (porous) inorganic low-k materials,” Microelectronic Engineering, vol. 60, pp. 125-132, 2002. [51] L. W. Hrubesh and S. R. Buckley, “Temperature and moisture dependence of dielectric constant for bulk silica aerogels,” in Proc. Mat. Res. Soc. Symp., vol. 476, pp. 99-104, 1997. [52] Barry J. Bauer, Eric K. Lin, H. J. Lee, Howard Wang and W. L. Wu, “Structure and property characterization of low k dielectric porous thin films,” J. Electro. Mater., vol. 30, no. 4, pp. 304-308, 2001. [53] C. Jin, S. Lin and J. T. Wetzel, “ Evaluation of ultra low k dielectric materials for advanced interconnects,” J. Electro. Mater., vol. 30, no. 4, pp. 284-289, 2001. [54] D. R. Ulrich, “Sol-gel processing,” Chemtech Apri., pp. 242-249, 1988. [55] L. L. Hench and J. K. West, “The Sol-Gel Process,” Chem. Rev., vol. 90, no. 1, pp. 33-72, 1990. [56] M. H. Jo, H. H. Park, D. J. Kim, S. H. Hyun, S. Y. Choi and J. T. Paik, “SiO2 aerogel film as a novel intermetal dielectric,” J. Applied Physics, vol. 82, no. 3, pp. 1299-1304, 1997. [57] L. A. Chow, T. Yu, B. S. Dunn, K. N. Tu and C. Chiang, “The processing and characterization of hybrid silica-based xerogel films,” in Proc. Mat. Res. Soc. Symp., vol. 476, 1997, pp. 105-110. [58] P. B. Wagh, R. Begag, C. M. Pajonk, A. Venkateswara Rao and D. Haranath, “Comparison of some physical properties of silica aerogel monliths synthesized by different precursors,” Materials Chem. and Phys., vol. 57, pp. 214-218, 1999. [59] C. V. Nguyen, K. R. Carter, C. J. Hawker, J. L. Hedrick, R. L. Jaffe, R. D. Miller, J. F. Remenar, Hee-Woo Rhee, P. M. Rice, M. F. Toney, M. Trollsas and D. Y. Yoon, “Low-Dielectric, nanoporous organosilicate films prepared via Inorganic/Organic polymer hybrid templates,” Chem. Mater., vol. 11, pp. 3080-3085, 1999. [60] K. R. Carter, “Recent advances in low-k polymeric materials,” in Proc. Mat. Res. Soc. Symp., vol. 476, 1997, pp. 87-97. [61] A. M. Padovani, L. Rhodes, L. Riester, G. Lohman, B. Tsuie, J. Conner, S. A. B. Allen and P. A. Kohl, “Porous methylsilsesquioxane for low-k dielectric applications,” Electrochemical and Solid-State Letters, vol. 4, no. 11, pp. F25-F28, 2001. [62] T. Fujikawa, T. Yoshikawa, T. Ohnishi and T. Sato, “Hydrogen promoted copper migration in the high pressure anneal process,” Jpn. J. Applied Physics, vol. 40, pp. 2191-2196, 2001. [63] H. Yokomichi and T. Hayashi, “Changes in structure and nature of defects by annealing of fluorinated amorphous carton thin films with low dielectric constant,” Applied Physics Letters, vol. 72, no. 21, pp. 2704-2706, 1998. [64] S. Mizuno, A. Verma, H. Tran, P. Lee and B. Nguyen, “Dielectric constrant and stability of fluorine doped PECVD silicon Oxide Thin Films,” in proc. VLSI Multilevel Interconnection Conference (VMIC), 1995, pp. 148. [65] T. Nguyen, H. Yang, D. R. Evans and S. T. Hsu, “Integration of MOCVD Copper and low-k fluorinated amorphous carbon in single damascene structures,” in proc. VLSI Multilevel Interconnection Conference (VMIC), 1998, pp. 31-32. [66] S. G. Lee et al., “Low dielectric constant 3MS α-Sic: H as Cu diffusion Barrier Layer,” Jpn. J. Applied Physics, vol. 40, pp. 2663-2668, 2001. [67] A. L. S. Loke, J. T. Wetzel, J. J. Stankus, M. S. Angyal, B. K. Mowry and S. S. Wong, “Electrical leakage at Low-k polyimide/TEOS interface,” IEEE Electron Device Letters, vol. 19, no. 6, 1998. [68] R. Buchhold et al., “A study on the microphysical mechanisms of adsorption in polyimide layers for microelectronic applications,” J. Electrochemical Society, vol. 145, no. 11, pp.4012-4018, 1998. [69] K. Mi Chang, I. C. Deng, S. J. Yeh and Y, P. Tsai, “Suppression of cupper diffusion through barrier metal-free hydrogen silsesquioxane dielectrics by NH3 plasma treatment,” Electrochemical and Solid-State Letters, vol. 2, no. 12, pp. 634-636, 1999. [70] J. S. Jeng and J. S. Chen, “Interdiffusions and reactions in Cu/TiN/Ti/Thermal Sio2 and Cu/TiN/Ti/Hydrogen Silsesquioxane multiplayer structures,” J. Electrochemical Society, vol. 149, no. 8, pp.G455-G460, 2002. [71] T. C. Chang, M. F. Chou, Y. J. Mei, J. S. Tsang, F. M. Pan, W. F. Wu, M. S. Tasi, C. Y. Chang, F. Y. Shih and H. D. Huang, “Enhancing the thermal stability of low dielectric constant hydrogen silsesquioxane by ion implantation,” Thin Solid Films, vol. 332, pp. 351-355, 1998. [72] C. Maddalon, K. Barla, E. Denis, E. Lous, E. Perrin, S. Lis, C. Lair and E. Dehan, “Planarization properties of hydrogen silsesquioxane(HSQ) influence on CMP”, Microelectronic Engineering, vol. 50, pp.33-40, 2000. [73] T. Gao, A. Witvrouw, B. Coenegrachts, C. Bruynseraede, M. Van Hove and K. Maex, “Integration of HSQ in the direct-on-metal approach for 0.25-μm technolofy,” Microelectronic Engineering, vol. 50, pp.349-355, 2000. [74] H. Namastsu, T. Yamaguchi, M. Nadase, K. Yamazaki and K. Kurihara, “Nano-patterning of a hydrogen Silsesquioxane resist with reduced linewidth fluctuations,” Microelectronic Engineering, vol. 41, pp.331-334, 1998. [75] M. G. Albrecht and C. Blanchette, “Materials issues with thin film hydrogen silsesquioxane low-k Dielectrics,” J. Electrochemical Society, vol. 145, no. 11, pp. 4019-4025, 1998. [76] P. T. Liu, T. C. Chang, Y. L. Yang, Y. F. Cheng, J. K. Lee, F. Y. Shih, E. Tsai, G. Chen and S. M. Sze, “Improvement on intrinsic electrical properties of low-k hydrogen silsesquioxane/copper interconnects employing deuterium plasma treatment,” J. Electrochemical Society, vol. 147, no. 3, pp. 1186-1192, 2000. [77] K. Barla et al., “Integration of HSQ as IMD in a five metal level, sub quarter micron technology using both W plug and hot aluminum metallisations,” in proc. VLSI Multilevel Interconnection Conference (VMIC), 1998, pp. 25-30. [78] W. L. Wu and H. C. Liou, “Study of ultra-thin hydrogen silsesquioxane films using X-ray reflectivity,” Thin Solid Films, vol. 312, pp. 73-77, 1998. [79] H. C. Liou and J. Pretzer, “Effect of curing temperature on the mechanical properties of hydrogen silsesquioxane thin films,” Thin Solid Films, vol. 335, pp. 168-191, 1998. [80] P. T. Liu, T. C. Chang, S. M. Sze, F. M. Pan, Y. J. Mei, W.F. Wu, M. S. Tsai, B. T, Dai, C. Y. Chang, F. Y. Shih and H. D. Hung, “The effect of plasma treatment for low dielectric constant hydrogen silsesquioxane (HSQ),” Thin Solid Films, vol. 332, pp. 345-350, 1998. [81] T.C. Chang, P. T. Liu, T. M. Tsai, F. S. Yeh, T. Y. Tseng, M. S. Tsai, B. C. Chen, Y. L. Yang and S. M. Sze, “Elimination of dilectric degradation for chemical-mechanical planarization of low-k hydrogen silsesquioxane,” Jpn. J. Applied Physics, vol. 40, pp. 3143-3146, 2001. [82] K. M. Chang, I. C. Deng, S. J. Yeh and Y. P. Tsai, “Using NH3 plasma treatment to improve the characteristics of hydrogen silsesquioxane for copper interconnection application,” J. Electrochemical Society, vol. 147, no. 5, pp.1957-1961, 2000. [83] M. C. Lee, “Chemical processes in glass polishing,” J. Non-Crystalline Solids, vol. 120, pp.152-171, 1990. [84] P. T. Liu, T. C. Chang, Y. S. Mor and S. M. Sze, “Enhancing the oxygen plasma resistance of low-k methysilsequioxane,” Jpn. J. Applied Physics, vol. 38, pp. 3482-3486, 1999. [85] T. C. Chang, P. T. Liu, Y. S. Mor, S. M. Sze, Y. L. Yang, M. S. Feng, F. M. Pan, D. T. Dai and C. Y. Chang, “The novel improvement of low dielectric constant methysilsequioxane by N2O plasma treatment,” J. Electrochemical Society, vol. 146, no. 10, pp.3802-3806, 1999. [86] S. Sugahara, K. I. Usami and M. Matsumura, “ A proposed organic-silica film for inter-metal-dielectric application,” Jpn. J. Applied Physics, vol. 38, pp. 1428-1432, 1999. [87] D. R. Bujalski, S. Grigoras, W. L. Lee, G.. M. Wieber and G. A. Zank, “Stoichiometry control of SiOC ceramics by siloxane polymer functionality,” J. Mater. Chem., vol. 8, no. 6, pp. 1427-1433, 1998. [88] S. Mikoshiba and S. Hayase, “Preparation of low density poly(methysilsequioxane)s for LSI interlayer dielectrics with low dielectric constant. Fobrication of Angstrom size pores prepared by baking trifluoropropylsiyl copolymers,” J. Mater. Chem., vol. 9, pp. 591-598, 1999. [89] A. Courtot-Descharles, F. Pires, P. Paillet and J. L. Leray, “Density functional theory applied to the calculation of dielectric constant of low-k materials,” Microelectronics Reliability, vol. 39, pp. 279-284, 1999. [90] C. Y. Wang, J. Z. Zheng, Z. X. Shen, Y. Lin and A. T. S. Wee, “Eliminiation of O2 plasma damage of low-k methyl silsesquioxane film by as implantation,” Thin Solid Films, vol. 397, pp. 90-94. 2001. [91] C. H. hsieh, S. J. Chen and C. C. Hsu, “A novel non-furnace curing process of low-k dielectric material with implant treatment for 0.35μm and 0.25μm device,” in proc. Int. Dielectrics for ULSI Multilevel Interconnection Conferenc (DUMIC), 1998, pp.140-147. [92] M. Matsuura, Y. Ii, K. Shibata, Y. Hayashide and H. Kotani, “An advanced interlayer dielectric system with partially converted organic SOG by using plasma treatment,” in proc. VLSI Multilevel Interconnection Conference (VMIC), 1993, pp. 113-115. [93] T. Nakano, K. Tokun and T. Ohta, “Effects of Si-C bond content on film properties of organic spin-on glass,” J. Electrochemical Society, vol. 142, no.4, pp. 1303-1307, 1995. [94] T. Nakano and T. Ohta, “Relationship between chemical composition and film properties of organic spin-on glass,” J. Electrochemical Society, vol. 142, no.3, pp. 918-925, 1995. [95] P. T. Liu, T. C. Chang, H. Su, Y. S. Mor, Y. L. Yang, H. Chung, J. Hou and S. M Sze, “Improvement in integration issues for organic low-k hybrid-organic-siloxane-polymer,” J. Electrochemical Society, vol. 148, no.2, pp. F30-F24, 2001. [96] K. Postava and T. Yamaguchi and M. Horie, “Estimation of the dielectric properties of low-k materials using optical spectroscopy,” Applied Physics Letters, vol. 79, no. 14, pp. 2231-2233, 2001. [97] A. Mallikarjunan, S. P. Murarka and T. M. Lu, “Metal drift behavior in low dielectric constant organosiloxane polymer,” Applied Physics Letters, vol. 79, no. 12, pp. 1855-1857, 2001. [98] T. R. Hsieh, T. Tseng, K. Ysai, C. H. Chu, S. Pi and D. Huang, “A study on low cost inter-metal-dielectric by boron and BF2 ion implantation modified SOG,” in proc. VLSI Multilevel Interconnection Conference (VMIC), 1998, pp. 574-579. [99] T. Furusawa, D. Ryuzaki, R. Yoneyama, Y. Homma and K, Hinode, “Oxygen plasma resistance of low-k organosilica glass films,” Electrochemical and Solid-State Letters, vol. 4, no. 3, pp. G31-G34, 2001. [100] L. Forester, M Cleeves, K. Ramkumar, D. K. Choi, M. Ross and W. R. Livesay, “Electron-beam curing of non-etchback SOG and application of a 0.5μm CMOS SRAM process,” in proc. VLSI Multilevel Interconnection Conference (VMIC), 1995, pp. 83-89. [101] Y. Shiotya, K. Maeda, T. Ishimaru, T. Ohdaira and r. Suzuki, “Analysis of pore and pore-related properties in plasma-enhanced chemical vapor deposition low dielectric constant films,” J. Electrochemical Society, vol. 149, no.9, pp. F103-F109, 2002. [102] M. R. Baklanov, K. P. Mogilnikov, V. G. Polovinkin and F. N. Dultsev, “Determination of pore size distribution in thin films by ellipsometric porosimrtry,” J. Vac. Sci. Technol. B, vol. 18, no.3, pp.1385-1391, 2000. [103] D. W. Gidley, W. E. Frieze, T. L. Dull, J. Sun, A. F. Yee, C. V. Nguyen and D. Y. Yoon, “Determination of pore-size distribution in low-dielectric thin films,” Applied Physics Letters, vol. 76, no.10, pp. 1282-1284, 2000. [104] J. J. Si, H. Ono, K. Uchida, S. Nozaki, H. Morisaki and N. Itoh, “Correlation between the dielectric constant and porosity of nanoporous silica thin films deposited by the gas evaporation technique,” Applied Physics Letters, vol. 79, no.19, pp. 3140-3142, 2001. [105] C. Hu, M. Morgen and P. S. Ho, “Thermal conductivity study of porous low-k dielectric materials,” Applied Physics Letters, vol. 77, no.1, pp. 145-147, 2000. [106] Y. Xu, D. W. Zheng, Y. Tsai, K. N. Tu, B. Zhao, Q. Z. Liu, M. Brongo, C. W. Ong, C. L. Choy, G.. T. T. Sheng and C, H. Tung, “Synthesis and characterization of porous polymeric low dielectric constant films,” J. Electronic Materials, vol. 30, no.4, pp.309-313, 2001. [107] J. Xu, J. Moxom, S. Yang, R. Suzuki and T. Ohdaira, “Porosity in porous methyl-silsesquioxane (MSQ) films,” Applied Surface Science, vol. 194, pp. 189-194, 2002. [108] J. M. Park and S. W. Rhee, “Remote plasma-enhanced chemical vapor deposition of nanoporous low-dielectric constant SiCOH films using vinyltrimethylsilane,” J. Electrochemical Society, vol. 149, no.8, pp. F92-F97, 2002. [109] E. Kondoh, M. R. Baklanov, H. Bender and K. Maex, “Structural change in porous silica thin film after plasma treatment,” Electrochemical and Solid-State Letters, vol. 1, no. 5, pp. 224-226, 1998. [110] S. M. Sze, Physics of Semiconductor Devices, New York: Wiley, 1981. [111] P. T. Liu, T. C. Chang, Y. L. Yang, Y. F. Cheng and S. M. Sze, “Effects of NH3-plasma Nitridation on the electrical characterization of low-k hydrogen silsesquioxane with copper interconnects,” IEEE Transactions on Electron Devices, vol. 47, no.9, pp.1733-1739, 2000. [112] H. Sodolski and M. Kozlowski, “DC conductivity of silica xerogels,” J. Non-Crystalline Solids, vol. 194, pp. 241-255, 1996. [113] S. V. Nitta, V. Pisupatti, A. Jain, P. C. Wayner, Jr., W. N. Gill and J. L. Plawsky, “Surface modified spin-on xerogel films as interlayer dielectrics,” J. Vac. Sci. Technol. B, vol. 17, no.1, pp.205-212, 1999. [114] S. E. Schulz, H. Koerner, C. Murray, I. Streiter and T. Gesser, “Influence of barrier and cap layer deposition on the properties capped and non-capped porous silicon oxide,” Microelectronic Engineering, vol. 55, pp.45-52, 2001. [115] J. K. Hong, H. S. Yang, M. H. Jo, H. H. Park and S. Y. Choi, “Preparation and characterization of porous silica xerogel film for low dielectric application,” Thin Solid Films, vol. 308-309, pp. 495-500, 1997. [116] D. De Roest, R. A. Donaton, M. Stucchi, K. Maex and B. Nauwelaers, “Simulation and measurement of capacitance in dielectric stacks and consequences for integration,” Microelectronic Engineering, vol. 55, pp.29-35, 2001. [117] D. Louis, C. Peyne, E. Lajoinie, B. Vallesi, D. Holmes, D. Maloney and S. Lee, “Improved post etch cleaning for low-k and copper integration for 0.18μm technology,” Microelectronic Engineering, vol. 46, pp.307-310, 1999. [118] T. C. Chang, Y. S. Mor, P. T. Liu, T. M. Tsai, C. W. Chen, Y. J. Mei and S. M. Sze, ‘Enhancing the resistance of low-k hydrogen silsesquioxane (HSQ) to wet stripper damage,” Thin Solid Films, vol. 398-399, pp. 523-526, 2001. [119] T. C. Chang, Y. S. Mor, P. T. Liu, T. M. Tsai, C. W. Chen, Y. J. Mei and S. M. Sze, “Recovering dielectric loss of low dielectric constant organic siloxane during the photoresist removal process,” J. Electrochemical Society, vol. 149, no.8, pp. F81-F84, 2002. [120] T. C. Chang, Y. S. Mor, P. T. Liu, T. M. Tsai, C. W. Chen, Y. J. Mei and S. M. Sze, “The Effect of ammonia plasma treatment on low-k methyl-hybrido-silsesquioxane against photoresist stripping damage,” Thin Solid Films, vol. 398-399, pp. 632-636, 2001.
|