(18.204.2.190) 您好!臺灣時間:2021/04/19 06:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李立薇
研究生(外文):Lee Li-Wei
論文名稱:抗諧振反射光波導陣列波導光柵波長解多工元件之設計
論文名稱(外文):Design of ARROW-based AWG Demultiplexers
指導教授:黃遠東黃遠東引用關係桂正楣
指導教授(外文):Prof. Yang-Tung HuangProf. Cheng-May Kwei
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:70
中文關鍵詞:光波導陣列光柵
外文關鍵詞:ARROWAWG
相關次數:
  • 被引用被引用:0
  • 點閱點閱:79
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究抗諧振反射光波導陣列波導光柵波長解多工器元件。不同於傳統的光波導技術,此設計可在矽基片上製作而適合於積體電路製造知技術。首先利用多層模理論和有效折射係數法來分析及設計抗諧振反射光波導結構,然後利用波束傳輸法 (Beam Propagation Method) 來模擬抗諧振反射光波導陣列波導光柵元件。利用這些分析工具設計了在矽基片上具有16個頻道、頻道間距為200 GHz、中心波長工作在1550.92 nm的抗諧振反射光波導陣列波導光柵波長解多工元件。此元件中心波長的損耗為2.83 dB,外圍波長的損耗為4.63dB,而3-dB 頻帶的寬度為0.74 nm,交互干擾的準位小於 —30dB。元件最小彎曲波導半徑為15mm,元件總尺寸為4×6 cm2。

In this thesis, the ARROW-based AWG device is designed. The design can be made of materials based on silicon substrates and is compatible to IC process technologies. First, we use the multilayer theory and Effective Index Method are used to analyze the ARROW structures. Then the Beam Propagation Method is used to simulate the performance of the ARROW-based AWG devices. Using these analyzing tools, we design a 16-channel ARROW-based AWG demultiplexer with 200-GHz spacing for 1550.92-nm operation on a Si substrate. The losses for the central and outer wavelengths are 2.83 and 4.63 dB, respectively. The 3-dB bandwidth is 0.74 nm. The crosstalk level is below —30 dB. The minimum radius of the bending waveguide in the device is 15 mm. The full device size is 4×6 cm2.

1 Introduction 1
2 Analytic Theories and Basic Structure for Antiresonant Re‡ ecting Optical
Waveguide Device 6
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Multilayer Characteristic Matrix Method . . . . . . . . . . . . . . . . . . 6
2.3 E¤ective Index Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Basic ARROW Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Beam Propagation Method (BPM) . . . . . . . . . . . . . . . . . . . . . 11
3 Operating Principle and Design of Arrayed Waveguide Grating 12
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Operating Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Layout of AWG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Design Considerations of AWG Devices . . . . . . . . . . . . . . . . . . . 21
4 ARROW-based AWG Demultiplexer 26
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Design of ARROW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.1 Design of ARROW by Multilayer Stack Theory . . . . . . . . . . 26
4.2.2 E¤ective Index Method for Channel ARROW Waveguides . . . . 30
4.3 Design of ARROW-based Arrayed-Waveguide Grating . . . . . . . . . . . 35
i
4.3.1 AWG Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.2 Performance of Designed AWG Devices . . . . . . . . . . . . . . . 37
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5 Conclusion 45

[1] Ray T. Chen, Louis S. Lome, editors, “Wavelength DivisionMultiplexeing, A Critical
Review, CR71,” SPIE Optical Engineering Press, 1999.
[2] G. E. Keiser, “A review of WDM Technology and applications,” Optical Fiber Tech.
5, pp. 3-39, 1999, published by Academiv Press.
[3] M. A. Scobey, W. J. Lekki, T. W. Geyer, “Filters create thermally stable, passive
multiplexer,” Laser Focus World, pp. 111, 1997.
[4] Y.P. Li, C.H. Henry, E.J. Laskowaki, H.H. Ya¤e, “Monolithic optical waveguide
1.31/1.55 micron m WDM with -50 dB crosstalk over 100nm bandwidth,” Electron.
Lett., vol. 31, pp. 2100-2101, 1995.
[5] L. B. Soldano. E.C.M. Pennings, “Optical multi-mode interference devices based on
self-imaging: principles and applications,” J. Lightwave Tech. vol. 13, pp. 615-627,
1995.
[6] M. K. Smit, “New focusing and dispersive planar component based on an optical
phased array,” Electron. Lett., vol. 24, no. 7, pp. 385-386, 1988.
[7] M. A. Duguay, Y. Kukubun, and T. L. Koch, “Antiresonant re‡ecting optical
waveguide in SiO2-Si multilayer structures.” App. Phys. Lett., vol. 49, pp. 13-15,
1986.
[8] T. Tamir (Ed.), “Guided-Wave Optoelectronics,” Springer-Verlag, 1990, pp. 43-50.
46
[9] R. M. Knox and P. P. Toulios, “Integrated circuits for millimeter through optical
frequency region,” in Proc. MRI Symp. Submillimeter Waves, J. Fox, Ed. Brooklyn:
Ploytechnic Press, pp. 497—516, 1971.
[10] G. B. Hocker and W. K. Burns, “Mode dispersion in di¤used channel waveguides
by e¤ective index method,” Appl. Opt., vol. 16, no. 1, pp. 113—118, 1977.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔