(34.204.201.220) 您好!臺灣時間:2021/04/19 17:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊呈尉
研究生(外文):Yang Cheng-Wei
論文名稱:第二型碎能隙量子系統之電子結構與自旋相關傳輸之研究
論文名稱(外文):Electronic Structures and Spin-dependent Transport in Type-II Broken-Gap Quantum Systems
指導教授:顏順通
指導教授(外文):Yen Shun-Tung
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:60
中文關鍵詞:碎能隙中紅外線能帶結構自旋自旋濾波器自旋正反器應力
外文關鍵詞:broken gapMWIRband structurespinspin filterspin flip-flopstrain
相關次數:
  • 被引用被引用:2
  • 點閱點閱:125
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用8×8的 Hamiltonian及scattering matrix方法且考慮應力效應下,計算碎能隙量子井的能態結構和對應各量子化能態的波函數機率密度分布,發現電子能態和輕電洞能態有強烈的混成效應,且藉由改變量子井的寬度和應力後發現碎能隙量子井有機會由半導體特性轉變為劣金屬特性。同時成功設計出發光波長在中紅外線波段之量子井結構。當改變材料使其受到一相反應力效應但維持系統為碎能隙結構時,發現在受擴張應力下無法像傳統量子井結構中輕電洞能態成為第一個量子化價帶能階,並且在計算動量矩陣元素後得知此系統對電子躍遷速率沒有明顯改進。但當變化系統為W形和超晶格對稱結構後發現,此系統能有效改進點子躍遷速率,尤其為電子能態至重電洞能態。
對於碎能隙共振穿透元件,研究中觀察不同方向入射時穿透頻譜的變化情形,並且研究在不同入射電子自旋能態情形下穿透此系統後至各自旋能態的穿透率譜圖及相對比例,發現在一自旋相混的入射電子,穿透系統後在某些能量下兩自旋能態穿透率比例不同,可以將其應用在自旋濾波器上。而當入射電子為單一自旋時,發現在非對稱及非正向入射情況下穿透電子有部分會到另一自旋能態,並且在某些能量下其穿透機率較原來自旋穿透機率高,藉此現象可以有助於自旋正反器的應用。

In the thesis, we have performed a theoretical investigation of the electronic structures, and optical and spin-dependent transport properties of broken-gap quantum wells. The calculations are based on the 8×8 k.p Hamiltonian and the scattering matrix method, with strain effect taken into account. We found that the electron states and light hole states can be strongly mixing with each other even at zone center while the heavy hole states are decoupled from them. By varying the thicknesses and the stress of the layers, we also found that a phase transition of the system can occur from the semiconducting phase to the semimetallic phase. The active layers for semiconductor lasers emitting in mid IR range were designed using the broken-gap quantum wells. For flexibility in the design and efficient optical transition between electron and light hole states, we use the ternary compounds that make the expitaxial layers tensile-strained. However, it is difficult to pull up the first light hole band above the first valence state by means of the tensile strain for broken gap structures, unlike the case in type-I quantum wells. By comparing the momentum matrix elements of the structures with different stress, we found that the train effect cannot give any significant improvement in the transition efficiency. Fortunately, a significant improvement in transition rate can be achieved in structures consisting of W-shaped quantum wells. A structure of ultra-thin layers (superlattice) has also proposed and the calculated results showed that it can give momentum matrix elements much larger than those of the W-shaped structure.
The broken-gap system is a good candidate for spintronics because of the strong spin-orbit interaction. We therefore paid some attention to the spin-dependent transport in the system. The transmission spectra through the broken-gap structures are calculated with the incident electron polarized in various directions and impinging at various angles. It was found that the spin orientation of obliquely incident electrons can be rotated arbitrarily in properly designed asymmetric structures. Our tunneling structure can therefore serve as spin filters and spin flip-flops.

中文提要 ………………………………………………………… i
英文提要 ………………………………………………………… iii
誌謝 ………………………………………………………… v
目錄 ………………………………………………………… vi
表目錄 ………………………………………………………… vii
圖目錄 ………………………………………………………… viii
符號說明 ………………………………………………………… xii
一、 緒論…………………………………………………… 1
二、 理論架構……………………………………………… 4
2-1 塊材結構……………………………………………… 4
2-2 多層結構……………………………………………… 7
2-2-1 能帶結構 (Band structure)………………………… 11
2-2-2 動量矩陣元素 (Momentum matrix elements) …… 12
2-2-3 電子傳輸……………………………………………… 13
2-3 基底展開法(Basis expansion) …………………… 13
三、 結果與討論…………………………………………… 15
3-1 異質接面……………………………………………… 15
3-2 能帶結構計算結果…………………………………… 19
3-2-1 InAs/GaSb量子井特性………………………………… 19
3-2-2 MWIR主動層設計……………………………………… 26
3-2-3 InAs/GaSbxAs1-x系統………………………………… 30
3-2-4 W形碎能隙量子井…………………………………… 37
3-2-5 超晶格結構碎能隙量子井…………………………… 41
3-2-6 基底展開法計算結果………………………………… 42
3-3 量子傳輸……………………………………………… 45
3-3-1 電子混合自旋能態入射……………………………… 45
3-3-2 電子單一自旋能態入射……………………………… 51
四、 總結…………………………………………………… 57
參考文獻 ………………………………………………………… 59
簡歷 ………………………………………………………… 60

[1] R. Q. Yang and S. S. Pie, J. Appl. Phys 79, 8197 (1996).
[2] I. Vurgaftman et al., IEEE Photonics Technology Lett.
9,170 (1997).
[3] B. H. Yang et al., Appl. Phy. Lett. 72, 2220 (1998).
[4] P. Christol, IEE Proc.-Optoelectron 147, 181 ,(2000).
[5] W. W. Bewley et al., Appl. Phys. Lett. 17, 256 (2000).
[6] K. Fobelets et al., Semicond. Sci. Technol. 8, 1815(1993).
[7] J. Genoe et al., Phys. Rev. B 52, 14025 (1995).
[8] Y. X. Liu, D. Z.-Y. Ting and T. C. McGill, Phys. Rev. B
54, 5675 (1996).
[9] A. Zakharova, Solid State Commun. 113, 599 (2000).
[10] Physics of Optoelectronic Devices, edited by S. L.
Chuang, (Wiley-Interscience, New York, 1995).
[11] A. Zakharova, S. T. Yen, K. A. Chao, Phys. Rev. B 66,
085312 (2002).
[12] Bradley A. Foreman, Phys. Rev. B 56, R12 748 (1997).
[13] Chris G. Van de Walle, Phys. Rev. B 39,1871 (1989).
[14] D. L. Smith, C. Hailhiot, Phys. Rev. B 33, 8345 (1986).
[15] A. Zakharova, S. T. Yen, K. A. Chao, Phys. Rev. B 64, 235332 (2001).
[16] E. Halvorsen, Y. Galperin and K. A. Chao, Phys. Rev. B 61, 16743 (2000).
[17] M. P. C. M. Krijn, Semicond. Sci. Technol. 6, 27 (1991).
[18] M. Cardona, N. E. Christensen, Phys. Rev. B 37,1011 (1988)
[19] J. R. Meyer et al., Appl. Phys. Lett. 67, 757 (1995)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔