(3.231.230.175) 您好!臺灣時間:2021/04/16 02:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李維
研究生(外文):Wei Lee
論文名稱:具有鉑金屬矽化物之P通道蕭特基複晶矽薄膜電晶體的製造與分析
論文名稱(外文):FABRICATION AND CHARACTERIZATION OF P-CHANNEL SHOCKTTY BARRIER POLY-SI THIN-FILM TRANSISTORS WITH PTSI SOURCE/DRAIN
指導教授:黃調元黃調元引用關係林鴻志林鴻志引用關係
指導教授(外文):Tiao-Yuan HuangHorng-Chih Lin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:60
中文關鍵詞:薄膜電晶體
外文關鍵詞:PtTFT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,我們製作具有鉑金屬矽化物及副閘極電場感應汲極之P型蕭特基複晶矽薄膜電晶體,並研究其特性。此一元件的特色包括:未摻雜之多晶矽作為電晶體的通道,在靠近汲極端有一段補償區,利用沈積於氧化層上的副閘極可感應出不同偏壓模式,使同一元件可操作於P或N通道模式,以及具有鉑金屬矽化物的源極/汲極。其中多晶矽通道是由固相再結晶的方法形成。值得一提的是,由於鉑金屬矽化物之源極與汲極的形成,使得元件之P通道的特性比N通道的特性,無論在開關電流比上或是次臨界擺幅都比較好,這使得鉑金屬矽化物之元件的應用在P通道更為重要,所以本篇論文就針對P型元件之特性加以描述。
其次,沿用具副閘極之蕭特基鉑金屬矽化物源極/汲極結構之Fin薄膜電晶體,完成90nm通道長度及50nm Fin寬度的操作。其中元件特性相較於傳統薄膜電晶體來說,次臨界擺幅下降接近至80mV/dec,開關電流比高達108,而且關閉電流亦小於量測系統本身具有的雜訊電流,這是因為Fin結構具有較好的通道控制能力,所以相較於傳統平面結構的元件有較少的漏電流通道。

In this thesis, we have fabricated and characterized Shocktty barrier Poly-Si thin-film transistors (SBTFTs) with PtSi Source/Drain and field-induced drain (FID). The FID-SBTFT features an un-doped poly-Si channel layer with an offset channel region, a top field-plate (the sub-gate) lying over the passivation oxide and overlapping the entire offset channel region, and Pt-Silicided source/drain. In this work, the poly-Si channel layers were prepared by solid-phase crystallization (SPC) technique. It is worth mentioning that the performance in P-channel operation is much better than N-channel operation, with higher on/off current ratio and sharper subthreshold swing (SS). As a result, the device with PtSi is extremely promising for P-channel operation. In this thesis, we describe the importance of the SBTFTs with PtSi S/D on P-channel operation.
In addition, Poly-Si TFTs featuring PtSi Source/Drain, and nano-scale channel Fin structure with 90nm channel length and 50nm width were fabricated and characterized. The use of nano-scale poly-Si channels allows stronger control of the channel potential by the gate bias, and therefore better subthreshold characteristics could be obtained. We compared the p-type performance of devices with two kinds of structures, and also studied the effects of sub-gate bias, main-channel length, and channel offset length. Excellent device performance in terms of steep subthreshold slope (80mV/dec) and on/off current ration higher than 108 is obtained for P-channel operation.

Abstract (in Chinese) ………………………………………………………………..ii
Abstract (in English) ………………………………………………………………...iv
Acknowledgement …………………………………………………………………..vi
Contents ………………………………………………………………………….….vii
Table Captions ……………………………………………………………………….ix
Figure Captions……………………………………………………………………….x
Chapter 1 Introduction
1.1 Background and motivation…………………………………………….1
1.2 Thesis organization……………………………………………………..3
Chapter 2 Characterization of SB Poly-Si TFTs with Field-Induced Drain
2.1 Experiment
2.1.1 Device Structure and Fabrication……………………………….4
2.1.2 Electrical Characterization and Device Operation Principle……6
2.2 Experimental Results and Discussion
2.3.1 Effects of Silicide material………………………………………….7
2.3.2 Effects of Sub-Gate Bias……………………………………………8
2.3.3 Effects of Main Channel Length……………………………………8
2.3.4 Effects of Drain side Extension (Offset Channel Length)…………..9
2.3.5 Effects of Source side Extension…………………………………..10
2.3 Summary………………………….……………………………………10
Chapter 3 Characterization of P-channel SB Poly-Si TFTs with Field-Induced Drain using PtSi S/D and Nano-Scale Fin-like channel
3.1 Backgrounds…………………………………………………………..12
3.2 Device structure and fabrication………………………………………13
3.3 Results and Discussion
3.3.1 Basic Characteristic……………………………………………….14
3.3.2 Effects of Sub-Gate Bias…………………………………………..14
3.3.3 Effects of Main Channel Length…………………………………..15
3.3.4 Effects of Plasma Hydrogenation………………………………….16
3.3.5 Effects of Channel width…………………………………………..16
3.4 Summary………………………………………………………………17
Chapter 4 Conclusions and Suggestions for Future Work
4.1 Conclusions……………………………………………………………18
4.2 Future Work……………………………………………………………18
Reference ……………………………………………………………………………20
Table …………………………………………………………………………………24
Figure ………………………………………………………………………………..25
Vita …………………………………………………………………………………..60

[1] Chung-Kuang Huang, Wei E. Zhang, and C. H. Yang, “Two-Dimensional Numerical Simulation of Schottky Barrier MOSFET with Channel Length to 10 nm”, IEEE Trans. Electron Device, vol.45, pp. 842-848, 1998
[2] M. P. Lepselter, and S. M. Sze, “SB-IGFET: An Insulated-Gate Field-Effect Transistor Using Schottky Barrier Contacts as Source and Drain,” Proc. IEEE, 56, pp.1400-1401, 1968
[3] M. P. Lepselter, A. U. MacRae, R. W. MacDonald, ”SB-IGFET, II: An Ion Implanted IGFET Using Schottky Barrier”, Proc. IEEE, pp. 812-813, 1969.
[4] R. Hattori, A. Nakae, and J. Shirafuji, “A new type of tunnel-effect transistor employing internal field emission of Schottky barrier junction,” Jpn. J. Appl. Phys., vol. 31, pp. L1467-L1469, 1992.
[5] R. Hattori, A. Nakae, and J. Shirafuji, “Numerical simulation of tunnel effect transistor employing internal field emission of Schottky barrier junction,” Jpn. J. Appl. Phys., vol. 33, pp. 612-618, 1994.
[6] W. Saitoh, A. Itoh, S. Yamagami, and M. Asada, “Analysis of short-channel Schottky source/drain metal-oxide-semiconductor field-effect transistor on SOI substrate and demonstration of sub-50 nm n-type device with metal gate,” Jpn. J. Appl. Phys., Vol.38, pp. 6226-6231, 1999.
[7] J. P. Snyder, C. R. Helms, and Y. Nishi, ”Experimental investigation of a PtSi source abd drain field emission transistor,” Appl. Phys. Lett., vol. 67, p.1420, 1995
[8] L.E Calvet, H.Luebben, M. A. Reed, C. Wang, J. P. Snyder, and J. R. Tucker,” Suppression of leakage current in Schottky barrier metal-oxide-semiconductor field-effect transistors,” J.Appl. Phys., vol. 91, p.757, 2002
[9] T. Y. Huang, I. W. Wu, A. G. Lewis, A. Chiang, and R. H. Bruce, “A simpler 100-V polysilicon TFT with improved turn-on characteristics’, IEEE Electron Device Lett., vol. 11, p.244 1990
[10] H. C. Lin, C. Y. Lin, K.L. Yeh, R.G. Huang, M.F. Wang, C.M. Yu, T. Y. Huang, and S. M. Sze, “A novel implantless MOS thin-film transistor with simple processing, excellent performance and ambipolar operation capability,” IEDM Tech. Dig., 2000, pp. 857-859.
[11] H. C. Lin, K.L. Yeh, R.G. Huang, and T. Y. Huang, “Schottky barrier thin-film transistor (SBTFT) with silicided source/drain and field-induced drain extension,” IEEE Electron Device Lett., vol. 22, pp. 179-181, 2001.
[12] H. C. Lin, K.L. Yeh, R.G. Huang, T. Y. Huang, and S. M. Sze, “Ambipolar Schottky barrier thin-film transistor (SBTFT),” IEEE Trans. Electron Devices, vol. 49, pp. 264-270, 2002.
[13] K.L. Yeh, H. C. Lin, R.G. Huang, R. W. Tsai, and T. Y. Huang, “Reduction of off-state leakage current in Schottky barrier thin-film transistors (SBTFT) by a field-induced drain,” to appear in the Jpn. J. Appl. Phys., April, 2002.
[14] H. C. Lin, Kuan-Lin Yeh, R.G. Huang, and T. Y. Huang, “Impacts of field-induced drain (FID) on the ambipolar operation of poly-Si Schottky barrier thin-film transistors (SBTFT’s)”, Proc. Active—Matrix Liquid-Crystal Display (AM-LCD), 2001, pp. 247-250.
[15] H. S. Wong, D. J. Frank, Y. Taur, and J. M. C. Stock, “Design and Performance considerations for sub-0.1um double-gate SOI MOSFET’s,” in IEDM Tech. Dig., 1994, p.747, 1994
[16] D. Hisamoto, C. Hu, “FinFET-a self-aligned double-gate MOSFET scalable to 20 nm,” IEEE Trans. Electron Devices, vol. 47, p.2320, 2000
[17] X.Huang, C.Hu, “Sub-50nm p-channel FinFET,” IEEE Trans. Electron Devices, vol 48, p.880,2001
[18] M. Nishsaka and T. Asano, “Reduction of the Floating Body Effect in SOI MOSFET’s by Using Schottky Source/Drain Contacts,” Jpn. J. Appl. Phys., vol.37, pp. 1295-1299, 1998.
[19] J. Kedzierski, P. Xuan, E. H. Anderson, J. Boker, T. J. King, and C. Hu, “complementary silicide source/drain thin-body MOSFETs for the 20nm gate length regime,” in IEDM Tech. Dig., p.57, 2000
[20] Meng-Fan Wang, “新式金氧半場效電晶體之閘極與源/汲極工程研究”, 交大博士論文, 2002
[21] Ren-Wei Tsai, “具有電場感應汲極的蕭特基阻障多晶矽薄膜電晶體之研究” 交大碩士論文, 2002
[22] D.K. Wouters, J.P.Colinge, and H.E.Maes, “Subthreshold Slop in Thin-Film SOI MOSFET’s” IEEE Trans. Electron Device, vol.37, p.2022, 1990

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔