跳到主要內容

臺灣博碩士論文加值系統

(44.223.39.67) 您好!臺灣時間:2024/05/22 15:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳弘育
研究生(外文):Hung-Yu Chen
論文名稱:超薄五氧化二鉭閘極介電層之特性研究
論文名稱(外文):Characteristics of Ultra-Thin Ta2O5 Gate Insulator
指導教授:張國明
指導教授(外文):Kow-Ming Chang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:63
中文關鍵詞:五氧化二鉭介電常數閘極介電層
外文關鍵詞:tantalum pentoxidedielectric constantgate insulator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:351
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
當場效電晶體的閘極介電層厚度微縮至1.5奈米厚時,將產生一些諸如電子穿遂效應等嚴重的問題。因此亟需以較厚等效厚度之高介電常數材料取代二氧化矽作為閘極介電層,其中五氧化二鉭就是極有希望的材料之一。本實驗利用直流濺鍍法沈積鉭金屬於矽基材上,接著以低溫通氧氣的爐管,長時間(50分鐘)氧化金屬鉭,得到氧化鉭薄膜。金屬薄膜的厚度有30Å以及40Å兩種,分別做750℃到950℃的快速熱退火處理。薄膜中的元素分佈由二次離子質譜儀(SIMS)測得,其結晶結構由X光繞射(XRD)圖譜判斷,而薄膜表面的粗糙度則由原子力顯微鏡(AFM)探得。不同處理條件下的薄膜電性,經由I-V、C-V量測、SILC、磁滯效應、以及頻率散射的量測得知。同時也討論量子效應的漏電流機制。沈積30Å鉭金屬的樣本,在氧化後經過750度30秒的快速熱退火處理後,有最低的漏電流以及最佳的電性。而沈積40Å的鉭金屬樣本在氧化後,經過850度30秒的熱處理有最佳的電性。這些薄膜幾乎沒有磁滯效應,但是頻率散射頗為明顯。從C-V量測萃取出等效二氧化矽厚度(EOT)大約16 Å到19Å,介電係數為18到20。這些薄膜在1伏特時的漏電流密度約為10-2(A/cm2),比相同EOT的二氧化矽薄膜約小二個數量級。

When the MOSFET gate insulator is scaled below 1.5nm, some serious problems such as direct electric tunneling will occur. Therefore, high dielectric constant material is very desirable to replace SiO2. Tantalum oxide is a promising material for future MOSFET gate oxide applications. In this study, we use DC sputter system to deposit tantalum metal on silicon surface and proceeded with furnace low temperature and long time (50 min) oxidation to prepare Ta2O5 thin film. Two kinds of thickness were prepared and several RTA conditions from 750℃ to 950℃ were performed. The element distribution, crystallinity, and morphology of the films were investigated by second ion mass spectrometer (SIMS), X-ray diffraction (XRD), and atomic force microscope (AFM), respectively. The electrical properties of the films subjected to different treatment were measured, such as C-V curve, I-V curve, stress induced leakage current (SILC), hysteresis effect and frequency dispersion. Their equivalent oxide thicknesses (EOT), flatband voltage (VFB) and dielectric constant were also extracted. Moreover, the conduction mechanism with quantum effect was discussed. The as-deposit 30Å and 40Å samples have least leakage current and good electric characteristics under 750℃ 30sec and 850℃ 30sec RTA treatment, respectively. These samples have negligible C-V hysteresis effect but suffer severe frequency dispersion. From the C-V curve, we get equivalent oxide thicknesses ranging from 16 to 19Å, dielectric constants ranging from 18 to 20, and leakage current about 10-2 (A/cm2) at 1V. The magnitude of leakage current was about 2 orders less than pure oxide with the same EOT.

Contents
Abstract (in Chinese) i
Abstract (in English) ii
Acknowledgments (in Chinese) iii
Contents iv
Table Captions vi
Figure Captions vii
Chapter 1 Introduction
1.1 The Requirement of High-k Material 1
1.2 Ta2O5 Background and Motivation 1
1.3 Thesis Organization 2
1.4 References 2
Chapter 2 Experimental of Al/Ta2O5/Si MIS Capacitor
2.1 Experimental Details 5
2.1.1 Sputtering System 5
2.1.2 Furnace System 5
2.1.3 Rapid Thermal Annealing System 6
2.1.4 MIS Capacitors Fabrication Process 6
2.2 Analysis of the Physical Characteristics 7
2.2.1 N&K Measurement 7
2.2.2 Atomic Force Microscope (AFM) 8
2.2.3 X-ray Diffraction (XRD) 8
2.2.4 Secondary Ion Mass Spectrometer (SIMS) 9
2.3 References 9
Chapter 3 Electrical Characteristics of Al/Ta2O5/Si MIS Capacitors
3.1 Capacitance-Voltage Characteristics 11
3.1.1 Equivalent Oxide Thickness (EOT) and Dielectric Constant 11
3.1.2 Flatband Voltage (VFB) 12
3.2 Current-Voltage Characteristics 13
3.2.1 Leakage Current under both Bias Polarities 13
3.2.2 Band-gap Diagram and Conduction Mechanism 14
3.2.3 Breakdown Voltage 17
3.3 Reliability Issues of the Ultra Thin Ta2O5 Films 17
3.3.1 Stress Induced Leakage Current (SILC) 17
3.3.2 Hysteresis Effect 18
3.3.3 Frequency Dispersion 18
3.4 References 19
Chapter 4 Conclusion and Future Work
4.1 Conclusion 21
4.2 Future Work 21

chapter 1
[1] ITRS (SIA, San Jose, CA, 2001)
[2] Suehle, J.S.; Vogel, E.M.; Edelstein, M.D.; Richter, C.A.; Nguyen, N.V.; Levin, I.; Kaiser, D.L.; Wu, H.; Bernstein, J.B., “Challenges of high-k gate dielectrics for future MOS devices”, Plasma- and Process-Induced Damage, 2001 6th International Symposium on , 2001.
[3] Salam, K.M.A.; Konishi, H.; Fukuda, H.; Nomura, S., “Reduction of leakage current of crystallized Ta2O5 through substitution with TiO2”, Gate Insulator, 2001. IWGI 2001. Extended Abstracts of International Workshop on, 2001 Page(s): 192 -195.
[4] Jing-Chi Yu; Lai, B.C.; Lee, J.Y., “The fabrication and characterization of metal-oxide-semiconductor field effect transistors and gated diodes using Ta2O5 gate oxide”, Semiconducting and Insulating Materials Conference, 2000.SIMC-XI. International, 2000 Page(s): 353 -356.
[5] Anri Nakajima, Quazi D. M. Khosru, Takashi Yoshimoto, Toshirou Kidera, and Shin Yokoyama, “NH3-annealed atomic-layer-deposited silicon nitride as a high-k gate dielectric with high reliability”, Appl. Phys. Lett. 80, 1252-1254 (2002).
[6] T. Aoyama, S. Saida, Y. Okayama, M. Fujisaki, “Leakage current mechanism of amorphous and crystalline films grown by chemical vapor deposition”, J. Electrochem. Soc., 143(3), p.977, 1996.
[7] P. K. Roy, and I. C. Kizilyalli, “Stacked high-k gate dielectric for gigascale integration of metal-oxide-semiconductor technologies”, Appl. Phys, Lett., 72(22), p.2385, 1998.
[8] J.C.Yu, B. C. Lai, and J.Y.M.Lee, “Fabrication and characterization of metal-oxide-semiconductor field-effect transistors and gate diodes using Ta2O5 gate oxide”, IEEE Trans. Electron Device,21(11),p537,2000.
[9] S. Ezhilvalavan and Tseung-Yuen Tseng, “Conduction mechanisms in amorphous and crystalline Ta2O5 thin films”, J. Appl. Phys. 83, 4797 1998.
[10] S. Boughaba, M. Islam, J. P. McCaffrey, G. I. Sproule, and M. J. Graham, “Ultrathin Ta2O5 films produced by large-area pulsed laser deposition”, Thin Solid Films, 371, p.119, 2000.
[11] Benjamin Chih-ming Lai, Nan-hui Kung, and Joseph Ya-min Lee, “A study on the capacitance--voltage characteristics of metal-Ta2O5-silicon capacitors for very large scale integration metal-oxide-semiconductor gate oxide applications”, J. Appl. Phys. 85, 4087 1999.
[12] Wai Shing Lau, Merinnage Tamara Chandima Perera, Premila Babu, Aik Keong Ow, Taejoon Han, Nathan P. Sandler, Chih Hang Tung, Tan Tsu Sheng and Paul K. Chu, “The Superiority of N2O Plasma Annealing over O2 Plasma Annealing for Amorphous Tantalum Pentoxide (Ta2O5) Films”, Jpn. J. Appl. Phys. Vol.37 pp.L435-L437 1998.
[13] K.MA.Salam,H.Konishi, “Reduction of Leakage Current of Crystallized Ta2O5 Through Substitution with TiO2”, IWGI 2001, Tokyo.
[14] Wai Shing Lau, Thiam Siew Tan, Nathan P. Sandler, Barry S. Page, “Characterization of Defect States Responsible for Leakage Current in Tantalum Pentoxide Films for Very-High-Density Dynamic Random Access Memory (DRAM) Applications”, Jpn. J. Appl. Phys., Vol.34, pp.757-761, 1995.
chapter 2
[1] S. I. Kimuro, Y. Nishioka, A. Shintani, and K. Mukai, “Leakage-current increase in amorphous Ta2O5 films due to pinhole growth during annealing below 600 ℃”, J. Electrochem. Soc., 130(12), p.2414, 1983.
[2] R. A. B. Devine, L. Vallier, J. L. Autran, P. Paillet, and J. L. Leray, “Electrical Properties of Ta2O5 films obtained by plasma enhanced chemical vapor deposition using a TaF5 source”, Appl. Phys. Lett., 68(25), p.1775, 1996.
[3] S. I. Kimuro, Y. Nishioka, A. Shintani, and K. Mukai, “Leakage-current increasein amorphous Ta2O5 films due to pinhole growth during annealing below 600 ℃”, J. lectrochem. Soc., 130(12), p.2414, 1983.
[4] K.MA.Salam,H.Konishi, “Reduction of Leakage Current of Crystallized Ta2O5 Through Substitution with TiO2”, IWGI 2001, Tokyo.
[5] A. Pignolet, G. M. Rao, and S. B. Krupanidhi, “Rapid thermal processed thin films of reactively sputtered Ta2O5”, Thin Solid Films, 258, p.230, 1995.
[6] S. Kamiyama, P. Y. Lesaicherre, H. Suzuki, A. Sakai, I. Nishiyama, and A. Ishitani, “Ultrathin tantalum oxide capacitor dielectric layers fabricated using rapid thermal nitridation prior to low pressure chemical vapor deposition”, J. Electrochem. Soc., 140(6), p.1617, 1993.
[7] M. Hiratani, T. Hamada, S. Iijima, Y. Ohji, “Heteroepitaxial MIM-Ta2O5 apacitor with Enhanced Dielectric Constants for DRAMs of G-Bit Generation and Beyond”, 2001 Symposium on VLSI Technology Digst of Technical Papers (2001) T4B-2.
[8] V. I. Khitrova, V. V. Klechkovskaya, and Z. G. Pinsker, “Atomic Structure of Tantalum Oxide with Hexagonal Lattice in Thin Layers”, Sov. Phys. Crystallogr. 24, p.537 (1980).
chapter 3
[1] Donggun Park, Ya-chin King, “Transistor Characteristics with Ta2O5 Gate Dielecrtic”, IEEE Electron Device Letter, vol. 19 no. 11 November 1998.
[2] K. Kishiro, N. Inoue, S. J. Chen, and M. Yoshimaru, “Structure and electrical properties of thin Ta2O5 deposited on metal electrodes”, Jpn. J. Appl. Phys., 37, p.1336, 1998.
[3] Ben G.. streetman, Sanjay Banerjee,“Solid State Electronic Devices”, 2001.
[4] Dieter K. Schroder, “Semiconder Material and Device Characterization” Wiley-INTERSCIENCE, 1998.
[5] R. N. Hall, “Bulk generation current in depleted germanium junctions”, Appl. Phys. Lett. 29, 202 (1976)
[6] Yea-Dean Sheu and Gilbert A. Hawkins, “Method for reduction in surface generation current in polycrystalline-silicon-gate metal-oxide-semiconductor devices”, J. Appl. Phys. 73, 4694 (1993).
[7] E. Carnes and W. F. Kosonocky, RCA Rev. 33, 327 (1979).
[8] P. J. Caplan and E. H. Poindexter, J. Appl. Phys. 50, 5847 (1979).
[9] R. C. deWit and J. M. McKenzle, IEEE Trans, Nuci. Sci. NS-16, 352 (1968).
[10] R. H. Pehl, E. E. Haller, and R. C. Cordt, IEEE Trans. Nuci. Sci, NS-20, 494 (1973).
[11] J. Robertson, “Band Offsets of Wide-Band-Gap Oxides and Implications for Future Electronic Devices," J. Vac. Sci. Technol. B, Vol. 18, 2000, p. 1785.
[12] B. C. Lai and J. Y. Lee, J. Electrochem. Soc. 146, 266 ~1999.
[13] S. M. Sze, “Physics of Semiconductor Devices”, New York, Wiley, p.406, 1981.
[14] S. S. Gong et al., “Evolution of Qbd for electrons tunneling from the Si/SiO2 interface compared to electron tunneling from the poly Si/SiO2 interface”, IEEE Trans. Electron Devices, vol.40, p.1251,1993.
[15] K. F. Schuegraf et al., “Reliability od Thin SiO2 at direct tunneling voltages”, in IEDM Tech. Dig., p.609, 1994.
[16] C. Chaneliere, S. Four, J. L. Autran, R. A. B. Devine, and N. P. Sandler, “Properties of amorphous and crystalline Ta2O5 thin films deposited on Si from a Ta(OC2H5)5 precursor”, J. Appl. Phys., 83(9), p.4823, 1998.
[17] S. -H. Lo, D. A. Buchanan, Y. Taur, W. Wang, “Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET's”, IEEE Electron Device Letters , Volume: 18 Issue: 5 , May 1997 Page(s): 209 -211
[18] Benjamin Chih-ming Lai, Nan-hui Kung, and Joseph Ya-min Lee, “A study on the capacitance--voltage characteristics of metal-Ta2O5-silicon capacitors for very large scale integration metal-oxide-semiconductor gate oxide applications”, J. Appl. Phys. 85, 4087 (1999)
[19] HyperPhysics. @2000 C.R Nave Georgia University
[20] W. Zhu and T. P. Ma,”HfO2 and HfAlO for CMOS: thermal stability and current transport”, Electron Devices Meeting, 2001. IEDM Technical Digest. International, 2001 Page(s): 20.4.1 -20.4.4
[21] S. J. Lee, H. F. Luan, W. P. Bai, C. H. Lee, “High quality ultra thin CVD HfO2 gate stack with poly-Si gate electrode”, Electron Devices Meeting, 2000. IEDM Technical Digest. International , 2000 Page(s): 31 -34

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 整合微流管及溶液電導度量測奈升流體系統
2. 以快速升溫氧化技術成長1.0nm高品質氮氧化矽閘極絕緣層及其特性研究
3. 矽奈米線的新穎製程研究
4. 具備新穎ONO堆疊式閘極介電層之高效能低溫複晶矽薄膜電晶體製作與特性研究
5. 使用電子迴旋共振電漿處理技術於表面蝕刻之特性研究及開發氮化鎵的閘極介電與鈍化絕緣薄膜之應用
6. 低溫下利用大氣電漿沉積二氧化矽薄膜作為有機薄膜電晶體之閘極絕緣層在不同基本製程參數之研究
7. 以Polyimide高分子材料/NafionTM質子交換膜為結構作為pH-ISFET之微小化固態電極之研究
8. Ta2O5閘極介電層特性及尺寸效應所造成的MIS電容邊際漏電流
9. 氮化鎵金氧半場效電晶體之製程及特性研究
10. 高能量離子佈植0.35um反擴散分佈雙井CMOS製程研究
11. 利用氮中性粒子束處理非晶氧化銦鎵鋅薄膜電晶體在閘極偏壓不穩定性研究
12. 使用氮氣中性粒子束電漿處理之大氣常壓電漿輔助化學氣相沉積製備高效能銦鎵鋅氧薄膜電晶體研究
13. 使用氮氣中性粒子束電漿處理於大氣常壓電漿輔助化學氣相沉積製備氧化鎵鋅薄膜電晶體之研究
14. 使用微波退火處理大氣常壓電漿輔助化學氣相沉積製備非晶銦鎵鋅氧薄膜電晶體之研究
15. 大氣壓電漿輔助化學氣相沉積系統之氫電漿處理氧化銦鎵鋅薄膜電晶體與偏壓變溫不穩定特性研究