跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 20:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李兆琪
研究生(外文):Chao Chi Lee
論文名稱:LDMOS功率元件特性分析及可靠性研究
論文名稱(外文):Characterization, Modeling and Reliability of LDMOS Power Devices
指導教授:汪大暉
指導教授(外文):Tahui Wang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:55
中文關鍵詞:功率元件
外文關鍵詞:LDMOS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1286
  • 評分評分:
  • 下載下載:267
  • 收藏至我的研究室書目清單書目收藏:0
近年來,高功率積體電路興起並有廣泛的應用,而具有平面結構的LDMOS(平面二次擴散之金氧半場效電晶體)有高度整合性,於焉成為主要的驅動元件。LDMOS特有的低參雜區域能提供大電阻,是其能耐高壓的原因。在設計LDMOS時,能同時擁有低的開啟電阻以及高耐壓為重要的訴求點。
本篇論文的內容探討LDMOS的特性,包括基本電流-電壓特性、崩潰機制、與崩潰機制有關的重要製程參數、可靠性分析、以及SPICE模型的建立。其中,基本特性與崩潰機制是使用TCAD的模擬分析;而可靠性研究是利用常溫下熱載子加壓(stress)的實驗分析。SPICE模型是將既有的MOS模型加上可變電阻針對線性區域做模擬。
根據我們的研究,可以做出以下的結論:欲同時擁有低開啟電阻以及高耐壓是互相抵觸的;on-state的崩潰電壓由drift region內橫向電場決定,而off-state則是由bird’s beak下方的能帶彎曲程度決定;drift region濃度以及閘電極延伸的長度對崩潰電壓有很大的影響;NLDMOS與PLDMOS在常溫下用熱載子stress後皆會產生電子缺陷(electron trap);最後,LDMOS在線性區域的HSPICE模型是利用考慮閘電極延伸區域下方的電子濃度來建立的。

High voltage integrated circuits are emerging in a wide variety of application nowadays. LDMOS (Lateral Double-Diffused MOSFET) is usually the driver component in these circuits, thanks to its planar structure. The lightly-doped drift region provides a large drain resistance, allowing to withstand the high-applied voltage. One of the main objectives in designing LDMOS devices is to minimize the on-resistance while still maintaining a high breakdown voltage as well.
In our study, we will engage in the characteristics of LDMOS, including the I-V curve discussion, the breakdown mechanism, some of the key specific parameters related to breakdown voltage, the reliability issues after hot carrier stress and the quasi-saturation effect. Finally, a spice model is developed. In addition, the investigation of basic I-V characteristics and breakdown mechanism are carried out by TCAD simulation. On the other hand, the hot carrier stress reliability issue is examined experimentally. The spice model is constructed by adding a variable resistance to a standard MOSFET model.
According to our study, we can conclude that: low Ron and high breakdown voltage are trade-off; on-state breakdown voltage is determined by the electric field in the drift region while off-state breakdown voltage is determined by the surface band bending at the bird’s beak; drift region concentration and gate extension length have significant influence on breakdown voltage; NLDMOS and PLDMOS both have electron taps after stress; finally, HSPICE model of LDMOS at linear bias can be developed by considering the electron concentration in the gate extension region.

Chinese Abstract (i)
English Abstract (iii)
Acknowledgements (v)
Contents (vi)
Figure Captions (viii)
Chapter1 Introduction (1)
Chapter2 Analysis of LDMOS Characteristics (3)
2-1 Introduction (3)
2-2 LDMOS Basic Structure (3)
2-3 Basic I-V Curve Discussions (5)
2-4 Analysis of Breakdown Mechanism (6)
2-4-1 On-state breakdown mechanism (6)
2-4-1.1 VD dependence of the maximum impact ionization rate (9)
2-4-1.2 VG dependence of the maximum impact ionization rate (9)
2-4-1.3 Critical parameters of on-state breakdown voltage (10)
2-4-2 Off-state breakdown mechanism (17)
2-4-2.1 Simulation of avalanche breakdown point(17)
2-4-2.2 Critical parameters of off-state breakdown voltage(18)
Chapter3 Reliability Issues of LDMOS by Hot-carrier Stress(24)
3-1 Introduction (24)
3-2 Hot Carrier Reliability of LDMOS(24)
3-2-1 Reliability of LDMOS after on-state stress (24)
3-2-2 Reliability of LDMOS after off-state stress(29)
3-3 Comparison with the Stress Effects of PLDMOS (34)
Chapter4 Modeling and Quasi-Saturation Effect of LDMOS(43)
4-1 Introduction(43)
4-2 Quasi-Saturation Effect of LDMOS(43)
4-3 Hspice model of LDMOS(45)
Chapter5 Conclusion(53)
References(54)

[1]B. J. Baliga, “An overview of smart power technology,” IEEE Elect. Dev., Vol.
38, pp. 1568, July 1991.
[2]C. Contiero, P. Galbiati, and M. Palmieri, “Characteristics and applications of a 0.6μm Bipolar-CMOS-DMOS technology combining VLSI nonvolatile memories,” IEDM Tech. Dig., pp. 465, 1996.
[3]Z. Parpai, C. Andre, and T. Salama, “Optimization of RESURF LDMOS Transistors: An Analytical Approach,” IEEE Elect. Dev., Vol. 37, pp. 789-796, Mar 1990.
[4]A. Moscatelli et. al., “LDMOS Implementation in a o.35μm BCD Technology (BCD6) ,” ISPSD, pp. 323-326, 2000.
[5]J. G. Mena and C. A. T. Salama, “High voltage multiple-resistivity drift region LDMOS,” Solid-State Elect., Vol. 29, pp. 647-656, 1986.
[6]K. Board and M. Darwish, “LDMOS transistor with implanted and deposited surface layers,” Proc. Inst. Elec. Eng., pt. I, Vol. 132, pp. 177-180, 1985.
[7]G.. Charitat, A. Nezar, and P. Rossel, “Bi-dimensional analysis of high voltage RESURF LDMOS for smart power integrated circuits,” Proc. High Voltage and Smart Power ICs Symp., pp. 11-22, 1989.
[8]J. Jaejune, T. Amborg., and Yu Zhiping “Circuit model for power LDMOS including quasi-saturation,” SISPAD. Int., pp. 15 —18, 1999.
[9]S. Merchan., R. Baird, and S. Chang, “High-performance 13-65 V rated LDMOS transistors in an advanced smart power technology,” ISPSD, pp. 225 —228, 1999.
[10]K. Nakamura, Y. Kawaguchi, and K. Karouji et. al., “Complementary 25 V LDMOS for analog applications based on 0.6 μm BiCMOS technology” Bipolar/BiCMOS Circuits and Technology Meeting, pp. 94 —97, 2000.
[11]T. Y. Chan, A. T. Wu, et. al., “Asymmetrical characteristics in LDD and minimum overlap MOSFET’s,” IEEE Elect. Dev. Lett., Vol. 7, pp. 16, Jan. 1986.
[12]R. Izawa and E. Takeda, “The impact of N-drain length and gate-drain/source overlap on submicrometer LDD devices for VLSI,” IEEE Elect. Dev. Lett., Vol. 8, pp. 480, Oct. 1987.
[13]A. Nezar, C kdown voltage in LDMOS transistors using internal field rings,” IEEE Trans..A.T. Salama, “BreaElect. Dev., Vol. 38, pp. 1676 —1680, 1991.
[14]S. Merchant, E. Arnold, H. Baumgart, et. al., “Dependence of breakdown voltage on drift length and buried oxide thickness in SOI RESURF LDMOS transistors,” ISPSD., pp. 124 —128, 1993.
[15]R. Versari, A. Pieracci, “Experimental study of hot-carrier effects in LDMOS transistors” IEEE Trans. Elect. Dev., Vol. 46, Issue: 6 , pp.1228 —1233, Jun 1999.
[16]V. O'Donovan, S. Whiston, A. Deignan, “Hot carrier reliability of lateral DMOS transistors” IEEE IRPS., pp. 174 —179, 2000.
[17]M.K. Orlowski, C. Werner, J.P. Klink, “Model for the electric fields in LDD MOSFETs. I. Field peaks on the source side” IEEE Trans. Elect. Dev., Vol. 36, pp. 375 —381, Feb. 1989.
[18]M.K. Orlowski, C. Werner, “Model for the electric fields in LDD MOSFETs. II. Field distribution on the drain side,” IEEE Trans. Elect. Dev., Vol. 36, pp.382 —391, Feb. 1989.
[19]R. Versari, A. Pieracci, S. Manzini, “ Hot-carrier reliability in submicrometer LDMOS transistors,” IEDM, pp. 371 —374, Dec. 1997.
[20]S. Manzini, A. Gallerano, C. Contiero, ”Hot-electron injection and trapping in the gate oxide of submicron DMOS transistors,” ISPSD, pp. 415 —418, 1998.
[21]D. Brisbin, A. Strachan, P. Chaparala, “ Hot carrier reliability of N-LDMOS transistor arrays for power BiCMOS applications,” Reliability Physics Symposium Proceedings, pp. 105 —110, 2002.
[22]P. L. Hower, S. Merchant, “Snapback and safe operating area of LDMOS transistors,” IEDM, pp. 193 —196, 1999.
[23]M. L. Chen, C. W. Leung, et. al., “Suppression of hot-carrier effects in submicrometer CMOS technology,” IEEE Trans. Elect. Dev., Vol. 35, pp. 2210, Dec.1988.
[24]P. Moens, M. Tack, R. Degraeve, “A novel hot-hole injection degradation model for lateral nDMOS transistors,” IEDM, pp. 39.6.1 -39.6.4, 2001.
[25]Y. S. Kim, J. G. Fossum, “Physical DMOST modeling for high-voltage IC CAD,” IEEE Trans. Elect. Dev., Vol. 37, pp. 797 —803, 1990.
[26]D. Moncoqut, D. Farenc, P. Rossel, et. al., “LDMOS transistor for SMART POWER circuits: modeling and design,” Bipolar/BiCMOS Circuits and Technology Meeting, pp. 216 —219, 1996.
[27]E.C. Griffith, J.A. Power, S.C. Kelly, Elebert, et. al., “Characterization and modeling of LDMOS transistors on a 0.6 /spl mu/m CMOS technology,” ICMTS., pp. 175-180, 2000.
[28]P. Perugupalli, M. Trivedi, K. Shenai, S.K. Leong, “Modeling and characterization of 80 V LDMOSFET for RF communications, ” Bipolar/BiCMOS Circuits and Technology Meeting, pp. 92-95, 1997.
[29]B. Fatemizadeh, D. Silber, M. Fullmann, J. Serafin, “Modeling of LDMOS and LIGBT structures at high temperatures,” ISPSD., pp. 137-142, 1994.
[30]U. Apel, H.G.. Graf, C. Harendt, B. Hofflinger, T. Ifstrom, “A 100-V lateral DMOS transistor with a 0.3-micrometer channel in a 1-micrometer silicon-film-on-insulator-on-silicon,” IEEE Trans. Elect. Dev., Vol. 38, pp. 1655-1659, 1991.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top