|
[1]B. J. Baliga, “An overview of smart power technology,” IEEE Elect. Dev., Vol. 38, pp. 1568, July 1991. [2]C. Contiero, P. Galbiati, and M. Palmieri, “Characteristics and applications of a 0.6μm Bipolar-CMOS-DMOS technology combining VLSI nonvolatile memories,” IEDM Tech. Dig., pp. 465, 1996. [3]Z. Parpai, C. Andre, and T. Salama, “Optimization of RESURF LDMOS Transistors: An Analytical Approach,” IEEE Elect. Dev., Vol. 37, pp. 789-796, Mar 1990. [4]A. Moscatelli et. al., “LDMOS Implementation in a o.35μm BCD Technology (BCD6) ,” ISPSD, pp. 323-326, 2000. [5]J. G. Mena and C. A. T. Salama, “High voltage multiple-resistivity drift region LDMOS,” Solid-State Elect., Vol. 29, pp. 647-656, 1986. [6]K. Board and M. Darwish, “LDMOS transistor with implanted and deposited surface layers,” Proc. Inst. Elec. Eng., pt. I, Vol. 132, pp. 177-180, 1985. [7]G.. Charitat, A. Nezar, and P. Rossel, “Bi-dimensional analysis of high voltage RESURF LDMOS for smart power integrated circuits,” Proc. High Voltage and Smart Power ICs Symp., pp. 11-22, 1989. [8]J. Jaejune, T. Amborg., and Yu Zhiping “Circuit model for power LDMOS including quasi-saturation,” SISPAD. Int., pp. 15 —18, 1999. [9]S. Merchan., R. Baird, and S. Chang, “High-performance 13-65 V rated LDMOS transistors in an advanced smart power technology,” ISPSD, pp. 225 —228, 1999. [10]K. Nakamura, Y. Kawaguchi, and K. Karouji et. al., “Complementary 25 V LDMOS for analog applications based on 0.6 μm BiCMOS technology” Bipolar/BiCMOS Circuits and Technology Meeting, pp. 94 —97, 2000. [11]T. Y. Chan, A. T. Wu, et. al., “Asymmetrical characteristics in LDD and minimum overlap MOSFET’s,” IEEE Elect. Dev. Lett., Vol. 7, pp. 16, Jan. 1986. [12]R. Izawa and E. Takeda, “The impact of N-drain length and gate-drain/source overlap on submicrometer LDD devices for VLSI,” IEEE Elect. Dev. Lett., Vol. 8, pp. 480, Oct. 1987. [13]A. Nezar, C kdown voltage in LDMOS transistors using internal field rings,” IEEE Trans..A.T. Salama, “BreaElect. Dev., Vol. 38, pp. 1676 —1680, 1991. [14]S. Merchant, E. Arnold, H. Baumgart, et. al., “Dependence of breakdown voltage on drift length and buried oxide thickness in SOI RESURF LDMOS transistors,” ISPSD., pp. 124 —128, 1993. [15]R. Versari, A. Pieracci, “Experimental study of hot-carrier effects in LDMOS transistors” IEEE Trans. Elect. Dev., Vol. 46, Issue: 6 , pp.1228 —1233, Jun 1999. [16]V. O'Donovan, S. Whiston, A. Deignan, “Hot carrier reliability of lateral DMOS transistors” IEEE IRPS., pp. 174 —179, 2000. [17]M.K. Orlowski, C. Werner, J.P. Klink, “Model for the electric fields in LDD MOSFETs. I. Field peaks on the source side” IEEE Trans. Elect. Dev., Vol. 36, pp. 375 —381, Feb. 1989. [18]M.K. Orlowski, C. Werner, “Model for the electric fields in LDD MOSFETs. II. Field distribution on the drain side,” IEEE Trans. Elect. Dev., Vol. 36, pp.382 —391, Feb. 1989. [19]R. Versari, A. Pieracci, S. Manzini, “ Hot-carrier reliability in submicrometer LDMOS transistors,” IEDM, pp. 371 —374, Dec. 1997. [20]S. Manzini, A. Gallerano, C. Contiero, ”Hot-electron injection and trapping in the gate oxide of submicron DMOS transistors,” ISPSD, pp. 415 —418, 1998. [21]D. Brisbin, A. Strachan, P. Chaparala, “ Hot carrier reliability of N-LDMOS transistor arrays for power BiCMOS applications,” Reliability Physics Symposium Proceedings, pp. 105 —110, 2002. [22]P. L. Hower, S. Merchant, “Snapback and safe operating area of LDMOS transistors,” IEDM, pp. 193 —196, 1999. [23]M. L. Chen, C. W. Leung, et. al., “Suppression of hot-carrier effects in submicrometer CMOS technology,” IEEE Trans. Elect. Dev., Vol. 35, pp. 2210, Dec.1988. [24]P. Moens, M. Tack, R. Degraeve, “A novel hot-hole injection degradation model for lateral nDMOS transistors,” IEDM, pp. 39.6.1 -39.6.4, 2001. [25]Y. S. Kim, J. G. Fossum, “Physical DMOST modeling for high-voltage IC CAD,” IEEE Trans. Elect. Dev., Vol. 37, pp. 797 —803, 1990. [26]D. Moncoqut, D. Farenc, P. Rossel, et. al., “LDMOS transistor for SMART POWER circuits: modeling and design,” Bipolar/BiCMOS Circuits and Technology Meeting, pp. 216 —219, 1996. [27]E.C. Griffith, J.A. Power, S.C. Kelly, Elebert, et. al., “Characterization and modeling of LDMOS transistors on a 0.6 /spl mu/m CMOS technology,” ICMTS., pp. 175-180, 2000. [28]P. Perugupalli, M. Trivedi, K. Shenai, S.K. Leong, “Modeling and characterization of 80 V LDMOSFET for RF communications, ” Bipolar/BiCMOS Circuits and Technology Meeting, pp. 92-95, 1997. [29]B. Fatemizadeh, D. Silber, M. Fullmann, J. Serafin, “Modeling of LDMOS and LIGBT structures at high temperatures,” ISPSD., pp. 137-142, 1994. [30]U. Apel, H.G.. Graf, C. Harendt, B. Hofflinger, T. Ifstrom, “A 100-V lateral DMOS transistor with a 0.3-micrometer channel in a 1-micrometer silicon-film-on-insulator-on-silicon,” IEEE Trans. Elect. Dev., Vol. 38, pp. 1655-1659, 1991.
|