(3.236.228.250) 您好!臺灣時間:2021/04/17 13:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱凱翎
研究生(外文):Kai-Ling Chiu
論文名稱:CMOS元件1/f雜訊特性分析與模擬
論文名稱(外文):Characteristic Analysis and Simulation of Flicker NOISE in High Performance CMOS
指導教授:汪大暉
指導教授(外文):Tahui Wang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
中文關鍵詞:低頻雜訊
外文關鍵詞:Flicker NoisePocket implant
相關次數:
  • 被引用被引用:0
  • 點閱點閱:822
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:86
  • 收藏至我的研究室書目清單書目收藏:0
本文中探討了高效能類比0.13mm CMOS元件裡的口袋埋置效應。我們的研究成果顯示了口袋埋置製程會造成雜訊特性的劣化﹐因其造成通道方向上的不均勻門檻電壓。我們提出了一個可分析的模型來計算口袋埋置效應﹐並將載子濃度分佈的模擬與實驗結果相比較。
本文中另外探討了基底效應在低頻雜訊上所造成的影響。打了口袋埋置的元件相較於沒有打口袋埋置元件來說﹐它表現出較差的低頻雜訊特性。我們從模擬中了解了載子濃度分佈在這兩種不同元件中的差異性﹐而模擬的結果和實驗結論相吻合。
由通道熱載子寫入所造成的不均勻門檻電壓會增加源極電流雜訊﹐可是FN寫入則否。這說明了載子變動在低頻雜訊的重要性。而藉由我們對低頻雜訊的了解﹐藉由低頻雜訊實驗來淬取出元件所儲存的電荷分佈是可行的。基於不均勻門檻電壓所推導出的兩區域模型將被用來處理這件工作。

Pocket implant effect on drain current flicker noise in 0.13mm CMOS process based high performance analog nMOSFETs is investigated. Our result shows that pocket implantation will degrade device noise characteristics primarily due to enhanced non-uniform threshold voltage distribution along the channel. An analytical flicker noise model to take into account a pocket doping effect is proposed. And simulation of drain current flicker noise including channel carrier distribution is presented and is compared to the experiment results.
Body effect on low frequency is studied in this thesis. The pocket implant device shows worse behavior in low frequency noise. The difference of carrier distribution between pocket implant device and non-pocket device is clarified by simulation.
Non-uniform threshold voltage distribution along the channel resulting from channel hot electron stress would increase drain current flicker noise. And uniform FN stress wouldn’t cause the degradation of low frequency noise. That implies the impact of charge number fluctuation in flicker noise. According to the unified flicker noise model, it’s possible to extract trapped charge profile without using 2D device simulation. A two-region model based on non-uniform threshold voltage distribution is used to extract the trapped charge lateral profile.

Contents
Chinese Abstract i
English Abstract ii
Acknowledgements iii
Contents iv
Figure Captions vi
Chapter 1 Introduction 1
Chapter 2 Modeling of Pocket Implant Effect on
1/f Noise 3
2.1 Introduction 3
2.2 Why Sid/Id2 ? 3
2.3 1/f Noise Behavior of MOSFETs with
Different Pocket Dose 5
2.4 Modeling of Pocket implant Effect on
1/f Noise 11
Chapter 3 Effect of Inversion Carrier Distribution
on Low Frequency Noise 20
3.1 Introduction 20
3.2 Substrate Bias Effects on Channel Carrier
Distribution and Noise 20
3.3 Simulation of Channel Carrier
Distribution with Different Pocket
Implant Conditions 28
Chapter 4 Investigation of Non-uniform Threshold
Voltage Effect on Flicker Noise by Using
a SONOS Device 36
4.1 Introduction 36
4.2 1/f Noise in Program State 36
4.3 Extraction of Charge Distribution in
SONOS 45
Chapter 5 Conclusion 51

[1] Ali Hajimiri et al., “A General Theory of Phase Noise in Electrical Oscillators,” IEEE JSSC, Vol. 33, pp. 179, 1998
[2] S. Christensson et al. “Low Frequency Noise in MOS Transistors-I,” IEEE Solid-State Electronics, Vol. 11, pp. 797, 1968
[3] Ewout P. Vandamme et al. “Critical Discussion on Unified 1/f Noise Models for MOSFETs,” IEEE TED, Vol. 47, pp. 2146, 2000
[4] L. K. J. Vandamme et al. “Noise as a Diagnostic Tool for Quality and Reliability of Electronic Devices,” IEEE TED, Vol. 41, pp. 2176, 1994
[5] Aldert Van Der Ziel “Unified Presentation of 1/f Noise in Electronic Devices: Fundamental 1/f Noise Sources,” Proceeding of the IEEE, Vol. 76, pp. 233, 1988
[6] Kwok K. Hung et al., “A Unified Model for the Flicker Noise in Metal-Oxide-Semiconductor Field-Effect Transistors,” IEEE TED, Vol. 37, pp. 654, 1990
[7] Kwok K. Hung et al. “A Physics-Bases MOSFET Noise Model for Circuit Simulators,” IEEE TED, Vol. 37, pp. 1323, 1990
[8] F. N. Hooge “1/f Noise Sources,” IEEE TED, Vol. 41, pp. 1926, 1994
[9] Ray Jayaraman et al., “A 1/f Noise Technique to Extract the Oxide Trap Density near the Conduction Band Edge of Silicon,” IEEE TED, Vol. 36, pp. 1773, 1989
[10] K. K. Hung et al. “Flicker Noise Characteristic of Advanced MOS
Technologies,” IEEE IEDM, pp.34, 1988
[11] Aldert Van Der Ziel “Noise in Solid State Devices and Circuits,” John Wiley & Sons, 1986
[12] Paul R. Gray et al. “Analysis and Design of Analog Integrated Circuits,” John Wiley & Sons, 2001
[13] Shinji Odanaka et al. “Double Pocket Architecture Using Indium and Boron for Sub-100 nm MOSFETs,” IEEE EDL, Vol. 22, pp. 330, 2001
[14] Hyunsang Hwang et al. “Degradation of MOSFETs Drive Current Due to Halo Ion Implantation,” IEEE IEDM, pp. 21.4.1, 1996
[15] Romain Gwoziecki et al. “Optimization of Vth Roll-Off in MOSFET’s with Advanced Channel Architecture─Retrograde Doping and Pockets,” IEEE TED, Vol. 46, pp. 1551, 1999
[16] Bin Yu et al. “Short-Channel Effect Improved by Lateral Channel-Engineering in Deep-Submicronmeter MOSFET’s,” IEEE TED, Vol. 44, pp. 627, 1997
[17] Hemant V. Deshpande et al. “Analog Device Design for Low Power Mixed Mode Application in Deep Submicron CMOS Technology,” IEEE EDL, Vol. 22, pp. 588, 2001
[18] T. Ohguro et al, “0.12mm Raised Gate/Source/Drain Epitaxial Channel NMOS Technology,” IEEE IEDM, pp. 34.4.1, 1998
[19] T. Ohguro et al. “An Epitaxial Channel MOSFET for Improving Flicker Noise under Low Supply Voltage,” IEEE Symposium on VLSI, pp. 160, 2000
[20] Robert G.H. Lee et al. “A new Method for Characterizing the Spatial Distributions of Interface States and Oxide-Trapped Charges in LDD n-MOSFET’s,” IEEE TED, Vol. 43, pp. 81, 1996
[21] Direct Lateral Profiling of Hot-Carrier-Induced Oxide Charge and Interface Traps in Thin Gate MOSFET’s,” IEEE TED, Vol. 45, pp.512, 1998
[22] Ming-Horn Tsai et al, “The Impact of Device Scaling on the Current Fluctuation in MOSFET’s,” IEEE TED, Vol. 41, pp. 2061, 1994
[23] Rafael Rios et al. “A Three-Transistor Threshold Voltage Model for Halo Process,” IEEE IEDM, 2002
[24] Scott Martin et al. “BSIM3 Based RTS and 1/f Noise Models Suitable for Circuit Simulators,” IEEE IEDM, pp.85, 1998
[25] Hans van Meer, “Limitation of Shift-and-Ratio Based Leff Extraction Techniques for MOS Transistors with Halo or Pocket Implants,” IEEE EDL, Vol. 21, pp.133, 2000
[26] Yuan Taur et al. “A New “Shift and Ratio” Method for MOSFET Channel-Length Extraction,” IEEE EDL, Vol.13, pp.267, 1992
[27] Yuan Taur, “MOSFET Channel Length: Extraction and Interpretation,” IEEE TED, Vol. 47, pp. 160, 2000
[28] Fariborz Assaderaghi et al. “A Dynamic Threshold Voltage MOSFET (DTMOSFET) for Ultra-Low Voltage Operation,” IEEE IEDM, pp. 809, 1994
[29] M. Jamal Deen et al. “Effect of Forward and Reverse Substrate Biasing on Low-Frequency Noise in Silicon PMOSFETs,” IEEE TED, Vol. 49, pp. 409, 2002
[30] Tsun-Lai Hsu et al. “Low-Frequency Noise Properties of Dynamic Threshold (DT) MOSFET’s,” IEEE EDL, Vol. 20, pp.532, 1999
[31] Fariborz Assaderaghi et al. “Dynamic Threhold-Voltage MOSFET (DTMOS) for Ultra-Low Voltage VLSI,” IEEE TED, Vol. 44, pp. 414, 1997
[32] Hioraki Ueno et al. “Impurity-Profile-Based Threshold-Voltage Model of Pocket-Implanted MOSFET for Circuit Simulation,” IEEE TED, Vol. 49, pp. 1783, 2002
[33] Luca Larcher et al. “Impact of Programming Charge Distribution on Threshold Voltage and Subthreshold Slope of NROM Memory Cells,” IEEE TED, Vol. 49, pp.1939, 2002
[34] E. Lusky et al. “Characterization of Channel-hot-electron Injection by the Subthreshold Slope of NROM Device,” IEEE EDL, Vol. 22, pp.556, 2001
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔