跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/15 07:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:連秋旺
研究生(外文):Lian, Chiu-Wang
論文名稱:有機金屬合成製備之鉭酸鍶鉍薄膜在非揮發性鐵電記憶體之研究
論文名稱(外文):MOD Derived Strontium Bismuth Tantalate Films for NV-FRAM Applications
指導教授:曾俊元
指導教授(外文):Tseng, Tseung-Yuen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:76
中文關鍵詞:鐵電記憶體鉭酸鍶鉍二氧化鈰
外文關鍵詞:FRAMSrBi2Ta2O9CeO2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著個人攜行裝置逐漸盛行,非揮發性記憶體的需求越益增加。在現今所有非揮發記憶體技術中,鐵電記憶體以其優越的特性,廣受各界矚目與研究,可望成為下一代記憶體的主流。本論文以有機金屬合成法製備鉭酸鍶鉍(SBT)鐵電薄膜,研究其在鐵電記憶體上的應用。首先,以白金為上、下電極製備MFM電容,探討退火條件對SBT鐵電特性的影響,實驗結果在大於750oC退火後可得多晶的鈣鈦礦鐵電相, 值約為12.2 C/cm2。接著,以微影製程製作MFIS與MFMIS電容結構,探討SBT應用在非破壞性讀取記憶體方面的特性。這兩種結構中的絕緣層採用濺鍍沉積法製備的二氧化鈰(CeO2)薄膜取代傳統的二氧化矽。在MFIS結構方面,以6V的電壓作C-V量測可以得到記憶窗寬為0.95V。而在MFMIS方面,隨著面積比減少(AF:AI),在固定的電壓下可以得到更大的記憶窗寬。在最小的面積比(1:16),以5V作C-V量測可得記憶窗寬為2.7V。最後考慮元件的持續性(retention),MFM結構可以得到很好的持續時間,但若將鐵電膜沉積在閘極絕緣層上,持續時間會變的很短,很多文獻皆有相同的結果,我們亦將可能的原因列在文中。

As portable electronic devices become more and more popular nowadays, there is a confirmed increase in the demand for nonvolatile memory (NVRAM). Among all current NVRAM, ferroelectric memory (FRAM) is the most promising candidate. In this thesis, we investigated SrBi2Ta2O9 (SBT) films derived by metal organic decomposition (MOD) method for NVRAM applications. A well-shaped hysteresis loop with of 12.2 C/cm2 is obtained using Pt as top and bottom electrodes. The physical and electrical properties of SBT films associated with annealing conditions are also studied using the same MFM structure. As for nondestructive readout FRAM, MFIS and MFMIS capacitors have been fabricated by our three-mask lithography process. A suitable memory window width of the value 0.95V under a sweeping voltage 6V can be obtained from our MFIS capacitors using CeO2 films as insulator (I) layers. As the area ratio (AF:AI) of MFMIS capacitors decreases, the memory windows can increase up to 2.7V under a sweeping voltage 5V. The retention characteristics of MFIS and MFMIS capacitors are poor in our experiments. The reasons are discussed in the text.

Contents
Chinese Abstract..................................................................................................................i
English Abstract..................................................................................................................ii
Acknowledges....................................................................................................................iii
Contents................................................................................................................................iv
Table Captions...................................................................................................................vii
Figure Captions..................................................................................................................vii
Chapter 1 Introduction
1-1 General Background..........................................................................................................1
1-2 Motivation.........................................................................................................................4
1-3 Thesis Organization...........................................................................................................5
Chapter 2 Characteristic of ferroelectric
2-1 Basic Principles of Dielectrics...........................................................................................9
2-2 Ferroelectricity.................................................................................................................11
2-3 Properties of SrBi2Ta2O9 ................................................................................................13
2-4 Reliability
2-4-1 Fatigue................................................................................................................... 14
2-4-2 Retention................................................................................................................15
2-4-3 Imprint....................................................................................................................15
2-5 Ferroelectric Memory
2-5-1 Operation Mechanism of 1T1C FRAM.................................................................16
2-5-2 Operation Mechanism of FeMFET........................................................................18
Chapter 3 Experimental Details
3-1 Preparation of SBT Films ...............................................................................................25
3-2 Preparation of CeO2 Films...............................................................................................26
3-3 Processes of MFIS and MFMIS structure.......................................................................26
3-4 Physical Characterization Techniques
3-4.1 Scanning Electron Microscope (SEM) ..................................................................27
3-4.2 X-Ray Diffraction Analysis (XRD) .......................................................................28
3-5 Electrical Characterization Techniques
3-5.1 Current-Voltage (I-V) Measurements.....................................................................28
3-5.2 Capacitance-Voltage (C-V) Measurements............................................................29
3-5.3 Polarization Measurements.....................................................................................29
3-5.4 Fatigue Measurements............................................................................................30
Chapter 4 Experimental Results
4-1 Characteristics of SBT Films
4-1.1 Physical properties of SBT films............................................................................35
4-1.2 Polarization Hysteresis of SBT films.....................................................................36
4-2 Characteristics of CeO2 Films.........................................................................................39
4-3 Characteristics of MFIS structure
4-3-1 Basic Principle of MFIS structure..........................................................................41
4-3-2 Properties of MFIS structure..................................................................................44
4-4 Characteristics of MFMIS Structure ................................................................................46
4-5 Reliability.........................................................................................................................48
Chapter 5 Conclusions and Future Works
5-1 Conclusions.....................................................................................................................69
5-2 Future Works...................................................................................................................70
Reference.............................................................................................................................73

[1] A. Sheikholeslami, P. G. Gulak, “A Survey of Circuit Innovations in Ferroelectric Random-Access Memories,” Proceedings of the IEEE, Vol. 88, No. 5, 2000.
[2] S. S. Eaton, D. B. Butler, M. Parris, and D. Wilson, H. McNeillie, ISSCC Dig. Tech. Pap., pp. 130, 1988.
[3] T. Sumi et al., “Ferroelectric Nonvolatile Memory Technology and Its Applications,” Jpn. J. Appl. Phys., Vol. 35, pp. 1516-1520, 1996.
[4] H. T. Lue, T. Y. Tseng, and G. W. Huang, “Device Modeling of Ferroelectric Memory Field-Effect Transistor (FeMFET),” IEEE Electron Device, vol. 49, No. 10, pp. 1790-1798, 2002.
[5] S. Y. Lee et al., “A FRAM technology using1T1C and triple metal layers for high performance FRAMs,” 1999 Symposium on VLSI Technology, pp.141, 1999.
[6] C. R. Cho, W. J. Lee, B. G. Yu, and B. W. Kim, “ Dielectric and ferroelectric response as a function of annealing temperature and film thickness of sol-gel deposited Pb(Zr0.52Ti0.48)O3 thin film,” J. Appl. Phys., Vol. 86, pp. 2700-2711, 1999.
[7] T. Nakamura, Y. Nakao, A. Kamisawa, and H. Takasu, ”Preparation of Pb(Zr,Ti)O3 thin films on electrodes including IrO2,” Appl. Phys. Lett., Vol. 65, pp. 1522-1524, 1994.
[8] T. Tybell, C. H. Ahn, and J. M. Triscone, ”Ferroelectricity in thin perovskite films,” Appl. Phys. Lett., Vol. 75, 1999.
[9] P. K. Larsen, G. L. M. Kapschoer, M. J. E. Ulenaers, G. A. C. M. Spierings, and R. Cuppens, “Nanosecond switching of thin ferroelectric films,” Appl. Phys. Lett., Vol. 59, pp. 611-613, 1991.
[10] C. B. Sawyer and C. H. Tower, “Rochelle Salt as a Dielectric,” Physical Review, Vol. 35, pp. 269-273, 1927.
[11] J. Robertson and C. W. Chen, “Electronic structure of the ferroelectric layered perovskite SrBi2Ta2O9,” Appl. Phys. Lett., Vol. 69, pp. 1704-1706, 1996.
[12] J. Zhang, Z. Yin, and M. S. Zhang, ”Electronic band structure of ferroelectric SrBi2Ta2O9,” Appl. Phys. Lett., Vol. 81, pp. 4778-4780.
[13] J. S. Kim, C. Cheon, H. S. Shim, and C. H. Lee, “Crystal structure and phase transitions of Sr1xBi2yTa2O9 ceramics,” Journal of the European Ceramic Society, Vol. 21, pp. 1295-1298, 2001.
[14] T. W. Noh, S. J. Hyun, B. H. Park, and S. D. Bu, “Epitaxial Sr-Bi-Ta Oxide Films of Cubic Fluorite-Like Structure,” Journal of Electroceramics, pp. 273-278, 2000.
[15] J. S. Lee, H. J. Kwon, Y. W. Jeong, and H. H. Kim, “Structural characterization of the low-temperature phase in Sr-Bi-Ta-films,” Appl. Phys. Lett., Vol 74, pp. 2690-2692, 1999.
[16] H. Z. Jin and J. Zhu, “Size effect and fatigue mechanism in ferroelectric thin films,” J. Appl. Phys., Vol. 92, pp. 4594-4598, 2002.
[17] B. H. Park, B. S. Kang, and T. W. Noh, “Origins for Fatigue-free Properties of Bi-layered Perovskite Materials,” Journal of the Korean Physical Society, Vol. 35, pp. S1306-S1309, 1999.
[18] Y. Shimada, M. Azuma, K. Nakao, and S. Chaya, “Retention Characteristics of a Ferroelectric Memory Based on SrBi2(Ta, Nb)2O9,” Jpn. J. Appl. Phys., Vol. 36, pp. 5912-5916, 1997.
[19] L. Zheng, C. Lin, and W. P. Xu, “Vertical drift of P-E hysteresis loop in asymmetric ferroelectric capacitors,” J. Appl. Phys., Vol. 79, pp. 8634-8637, 1996.
[20] E. Fujii et al., “A Highly Reliability Ferroelectric Memory Technology with SrBi2Ta2O9-Based Material and Metal Covering Cell Structure,” IEEE Electron Devices, Vol. 48, No. 6, 2001.
[21] S. Kawashima et al., “Bitline GND Sensing Technique for Low-Voltage Operation FeRAM,” IEEE Journal of Solid-State Circuits, Vol. 37, pp. 592-598, 2002.
[22] E. Tokumitsu, G. Fujii, and H. Ishiwara, “Low Voltage Operation of Nonvolatile Metal-Ferroelectric-Metal-Insulator-Semiconductor (MFMIS) Field Effect Transistors (FETs) Using Pt/SrBi2Ta2O9/Pt/SrTa2O6/SiON/Si Structures,” Jpn. J. Appl. Phys., Vol. 40, pp. 2917-2922, 2001.
[23] RT66A Standardized Ferroelectric Test System Operation Manual.
[24] J. S. Lee, H. H. Kim, H. J. Kwon, and Y. W. Jeong, “Texture control and structure of SrBi2Ta2O9 thin films on Pt,” Appl. Phys. Lett., Vol. 73, pp. 166-168, 1998.
[25] S. J. Hyun, B. H. Park, S. D. Bu, and J. H. Jung, “Nonferroelectric epitaxial Sr-Bi-Ta oxide thin film with a high dielectric constant,” Appl. Phys. Lett., Vol 73, pp. 2518-2520, 1998.
[26] K. Amanuma, T. Hase, and Y. Miyasaka, “Preparation and ferroelectric properties of SrBi2Ta2O9 thin films,” Appl. Phys. Lett., Vol. 66, pp. 221-223, 2002.
[27] G. P. Choi, J. H. Park, C. H. Lee, I. D. Kim, and H. G. Kim, ”Time dependence of electrical properties of SrBi2Ta2O9 thin films after top electrode annealing,” Materials Ltters, Vol. 45, pp. 208-212, 2000.
[28] B. Dickens, E. Balizer, A. S. DeReggi, and S. C. Roth, “Hysteresis measurements of remanent polarization and coercive field in polymers,” J. Appl. Phys., Vol. 72, pp. 4258-4264, 1992.
[29] C Alemany, R Jimenez, J Revilla, J Mendiola, and M L Calzada, “Pulsed hysteresis loops on ferroelectric thin films,” J. Phys. D: Appl. Phys., Vol. 32, pp. L79-L82, 1999.
[30] S. H. Kim, S. H. Lee, T. H. kim, T. Zyung, Y. H. Jeong, and M. S. Jang, ”Growth, Ferroelectric Properties, and Phonon Modes of YMnO3 single Crystal,” Cryst. Res. Technol., Vol. 35, pp. 19-27, 2000.
[31] T. M. Pan et al., “Electrical Characteristics of Thin Cerum Oxide Film on Slicon Substrate by Reactive DC Sputtering,” Electrochemical and Solid-State Letters, Vol. 4, pp. F15-F17, 2001.
[32] L. Kim, J. Kim, H. Lee, D. Jung, and Y. Roh, “Electrical Characteristics of Al/CeO2(200)/Si(100) and Al/CeO2(111)/Si(111) Metal-Insulator-Semiconductor Structure,” Jpn. J. Appl. Phys., Vol. 40, pp. L564-L566, 2001.
[33] S. M. Sze, Physics of semiconductor devices, 2nd edition, John Wiley & Sons, 1981
[34] S. L. Miller, R. D. Nasby, J. R. Schwank, M. S. Rodgers, and P. V. Dressendorfer, “ Device modeling of Ferroelectric capacitors,” J. Appl. Phys., Vol. 68, pp. 6463-6471, 1990.
[35] E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, John Wiley & Sons, 2003.
[36] Y. Y. Lin and J. Singh, “Study of ferroelectric-thin-film thickness effects on metal-ferroelectric-SiO2-Si transistors,” J. Appl. Phys., Vol. 91, pp. 9297-9299, 2002.
[37] T. Kanashima and M. Okuyama, “Analysis of High Frequency Capacitance-Voltage Characteristics of Metal-Ferroelectrics-Insulator-Silicon Structure,” Jpn. J. Appl. Phys., Vol. 38, pp. 2044-2048, 1999.
[38] E. Tokumitsu, T. Isobe, T. Kijima, and H. Ishiwara, “Fabrication and Characterization of Metal-Ferroelectric-Metal-Insulator-Semiconductor (MFMIS) Structures Using Ferroelectric (Bi,La)4Ti3O12 Films,” Jpn. J. Appl. Phys.,Vol. 40, pp. 5576-5579, 2001.
[39] T. P. Ma and J. P. Han, “Why is Nonvolatile Ferroelectric Memory Field-Effect Transistor Still Elusive?,” IEEE Electron Device Letters, Vol. 23, pp.386-388, 2002.
[40] Y. Watanabe and A. Masuda, “Theoretical Stability of Polarization in Metal/Ferroelectric/Insulator/Semiconductor and Related Structures,” Jpn. J. Appl. Phys., Vol. 40, pp. 5610-5614, 2001.
[41] A. Lin et al., “Epitaxial growth of Pb(Zr0.2Ti0.8)O3 on Si and its nanoscale piezoelectric properties,” Appl. Phys. Lett. Vol. 78, pp. 2034-2036, 2001.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文