跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/27 09:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾盈達
研究生(外文):Yin-Ta Tseng
論文名稱:奈米場效電晶體的通道次能階和彈道傳輸之研究
論文名稱(外文):Channel Sub-bands and Ballistic Transport in NanoFETs
指導教授:陳 明 哲
指導教授(外文):Ming-Jer Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:51
中文關鍵詞:奈米場效電晶體通道次能階彈道傳輸
外文關鍵詞:NanoFETsChannel Sub-bandsBallistic Transport
相關次數:
  • 被引用被引用:0
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
當通道長度越來越短, 縮短到100奈米甚至更短時, 傳統金氧半場效電晶體模型的基本假設便逐漸失去它的正確性. 未來的金氧半場效電晶體可能會以接近它們彈道傳輸的極限來運作. 因此, 了解彈道傳輸元件的物理機制和如何達到類似彈道傳輸的運作是非常重要的。
實際上,金氧半場效電晶體都是以低於它們彈道傳輸的極限來運作, 因為載子在傳輸時會遇到散射. 我們可使用最近提出來的通道散射理論來探索載子在奈米場效電晶體傳輸的介觀特性。接近熱平衡的平均自由路徑  與 KT 層寬度l 的比例是了解奈米場效電晶體的通道散射特性的重要關鍵. 為了清楚的了解基本的介觀傳輸機制,  與 l 必須被分開. 我們用一維的量子力學模擬器和通道散射理論的溫度模型來分離  與 l. 我們可由分離出來的l 與 l 來了解它在不同偏壓下和不同通道長度下的介觀特性. 同時我們也藉由重現不同通道長度下的飽和電流電壓特性來確認我們分離的方法。

As channel lengths shrink towards 100 nm and below, the underlying assumptions of the conventional MOSFET model are rapidly losing validity. Future MOS transistors may operate near their ballistic limit, and it is important to understand ballistic device physics and the prospect of achieving quasi-ballistic operation.
In practice, current MOSFETs operate below the ballistic limit because of carrier scattering within the device. Channel backscattering theory has recently been introduced to explore mesoscopic aspects of carrier transport in nanoFETs. The ratio of near-equilibrium mean-free-path  to KT layer width l is key to channel backscattering characteristics in nanoFETs. To make clear underlying mesoscopic transport mechanisms,  and l must be separately addressed. Separation of  and l is achieved by means of a 1-D quantum mechanical numerical simulator on a MOS system, followed by a temperature dependent experiment on backscattering coefficient assessment. The resulting  and l reveal their mesoscopic behaviors as applied bias or gate length changes. Reproduction of saturation I-V characteristics with mask gate lengths down to 75 nm is further achieved adequately, confirming the validity of the separation process in a consistent manner.

Contents
Chinese Abstract…………………………………………………i
English Abstract…………………………………………………ii
Acknowledgements…………………………………………………iii
Contents…………………….…………………………………….iv
Figure Captions……………………………………………………v
Chapter 1 Introduction………………………………………..1
Chapter 2 Theory…………………………………………………3
2.1 The Ballistic MOSFET………………..…….………3
2.2 Scattering Theory of the MOSFET………………….9
Chapter 3 Separation Scheme…………………………….……13
3.1 Method to Calculate Subband Energies …………13
3.2 Method to Calculate the Injection Velocity…17
Chapter 4 Experimental Results and Comparison…………18
Chapter 5 Conclusion………………………….…………....20
References……………………………………….………….....21
Chinese Vita

[1] S. Datta, Electronic Transport in Mesoscopic Structures. Cambridge, U.K.: Cambridge Univ. Press, 1995.
[2] M. Lundstrom, “Elementary scattering theory of the Si MOSFET,” IEEE Electron Device Lett., vol. 18, pp. 361—363, July 1997.
[3] F.Assad, Z. Ren, S. Datta, M.S. Lundstrom, and P. Bendix, “Performance limits of Si MOSFET’s,” IEDM Tech. Digest, pp. 547-549, Dec.1999.
[4] G. Timp and J. Bude et al., “The ballistic nanotransistor,” in IEDM Tech. Dig., Dec. 1999, pp. 55—58.
[5] A. Lochtefeld and D. A. Antoniadis, “On experimental determination of carrier velocity in deeply scaled NMOS: how close to the thermal limit?” IEEE EDL, vol. 22, pp. 95-97, Feb. 2001.
[6] M. S. Lundstrom, “On the mobility versus drain current relation for a nanoscale MOSFET,” IEEE EDL, vol. 22, pp. 293-295, June 2001.
[7] M. -J. Chen, H. -T. Huang, K. -C. Huang, P. -N. Chen, C. -S. Chang, and C. H. Diaz, “Temperature dependent channel backscattering coefficients in nanoscale MOSFETs,” IEEE IEDM Tech. Dig., pp. 39-42, 2002.
[8] K. Natori, “Ballistic metal-oxide-semiconductor field effect transistor,” J. Appl. Phys.,vol. 76, pp. 4879-4890, 1994.
[9] J. S. Blakemore, “Approximations for the Fermi-Dirac integrals, especially the function, , used to describe electron density in a semiconductor,” Solid-State Electron., vol. 25, pp. 1067-1076, 1982.
[10] F.Assad, Z. Ren, D. Vasileska, S. Datta, and M.S. Lundstrom, “On the performance limits for Si MOSFET’s,: A theoretical study,” IEEE Trans. Electron Devices, vol. 47, pp. 232—240, Jan. 2000.
[11] R. Landauer, “Conductance as a consequence of incident flux,” IBM J. Res. Develop., vol. 1, pp. 223, 1957.
[12] M. S. Lundstrom, Fundamentals of Carrier Transport (Cambridge University Press, Cambridge, UK,1999) 2nd edn.
[13] F. Berz, The Bethe condition for thermionic emission near an absorbing boundary, Solid-State Electron. 28, pp. 1007-1011, 1985.
[14] Z. Ren and M. S. Lundstrom, “Simulation of nanoscale MOSFETs: A scattering theory interpretation,” Superlatt. Microstruct., vol. 27, no. 2/3, pp. 177—189, 2000.
[15] M. Lundstrom, Z. Ren, and S. Datta, “Essential physics of carrier transport in nanoscale MOSFET’s,” IEEE Trans. Electron Devices, vol. 49, pp. 133—141, Jan. 2002.
[16] S. I. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in Si MOSFET’s: Part I  effects of substrate impurity concentration,” IEEE TED, pp. 2357-2362, 1994.
[17] F. Stern, “Self-consistence results for n-type Si inversion layers,” Phys. Rev. B, vol. 5, pp. 4891-4899, June 1972.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top