跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/14 16:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃奐衢
研究生(外文):Huan-Chu Huang
論文名稱:積體電路射頻串音干擾抑制
論文名稱(外文):The Reduction of RF Crosstalk Interference to VLSI
指導教授:黃宇中
指導教授(外文):Yu-Chung Huang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:78
中文關鍵詞:串音干擾抑制非遮蔽雙絞線
外文關鍵詞:CrosstalkInterference ImmunityUTP
相關次數:
  • 被引用被引用:0
  • 點閱點閱:352
  • 評分評分:
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文的主旨乃是有鑑於在未來的單晶片系統(SoC)時代與奈米(Nano)紀元中,製程尺寸愈來愈小、工作頻率愈來愈快,及操作電壓愈來愈低時致使積體電路系統中引起的射頻串音干擾,將會愈來愈嚴重地影響電路及整個系統的特性與表現,甚至損毀電路元件。故我們提出一種完全嶄新的佈局方法來加以抑制此不必要的雜訊干擾,以幫助整體電路系統能正常運作。而我們所提出的方法乃是奠基於非遮蔽雙絞線對於雜訊抑制的觀念,加以引伸至應用到積體電路的層次以獲得對於雜訊干擾抑制的效果。
本篇論文是以非遮蔽雙絞線的原理為立論,輔以HFSS對設計結構在1GHz到3GHz間進行模擬,並以TSMC 0.35μm CMOS製程加以實現,最後為了盡量避免非必要的干擾性因素,我們是採用網路分析儀做晶片上(on-wafer)的直接量測,而與模擬結果做比較與呼應。
而我們在論文中共設計九種金屬連接線(interconnection)的結構,以做為相互的評比與對照,其中這九種結構其都被設計為1300μm的長度,以突顯串音干擾的效應,而整個晶片面積大小為1750μm × 1750μm。

The goal of our thesis is in consideration of the predictably severer interference to the characteristics and performances of circuits or systems even the components in VLSI chips from the RF crosstalk effects due to smaller process dimensions, quicker working frequency and lower operating voltage in future, especially in the SoC age and the Nano era.
In our thesis, consequently, we will ahead propose a completely new approach based on the concepts of unshielded twisted pair (UTP) to reduce the unwanted noise interference occurring in VLSI level and protect the whole circuit system from failure.
Our thesis is built up on the basis of UTP with the simulation under the frequency range from 1GHz to 3GHz by HFSS, and we furthermore implement our designed structures on chip through the TSMC 0.35μm logic silicide process. Eventually, for the sake of comparison with the simulation results, we adopt the on-wafer measurement by the network analyzer to eliminate the unexpected interfering factors.
In our thesis, nine different interconnection structures are presented for the purpose of contrast. Additionally, all of the interconnections are designed to be 1300μm in length to emphasize the effects of crosstalk interference. Moreover, the size of whole chip is 1750μm × 1750μm.

CONTENTNS
ABSTRACT (CHINESE) i
ABSTRACT (ENGLISH) ii
ACKNOWLEGEMENTS (CHINESE) iii
ACKNOWLEGEMENTS (ENGLISH) iv
CONTENTS v
TABLE CAPTIONS ix
FIGURE CAPTIONS x
CHAPTER 1 INTRODUCTION
1.1 BACKGROUND 1
1.2 THE CONTRIBUTIONS OF THIS THESIS 2
CHAPTER 2 PRINCIPLES AND ANALYSES OF UTPs
2.1 INTRODUCTION 4
2.2 THE QUANTITATIVE ANALYSES OF UTPs 4
2.2.1 Basic Derivation of Magnetic Field Caused by a Constant
Current 5
2.2.2 The Inductances 7
2.2.3 The Faraday’s Law 8
2.2.4 The Physical Principles of UTPs 10
2.3 THE QUALITATIVE ANALYSES OF UTPs 15
2.3.1 One UTP Used as the Victim 15
2.3.2 One UTP Used as the Attacker 17
2.3.3 Equal-Spanned UTPs Used as the Attacker and Victim 18
2.3.4 Unequal-Spanned UTPs Used as the Attacker and Victim 19
2.3.5 One UTP with More Turns Used as the Attacker 20
2.3.6 Equal-Spanned UTPs with More Turns Used as the
Attacker and Victim 21
2.4 NOWADAYS UTP APPLICATIONS ON PCB LEVEL 22
2.4.1 The Twisted Differential Lines (TDL) on PCB Level 22
2.4.2 The V-TDL and O-TDL on PCB Level 23
CHAPTER 3 DESIGNS AND SIMULATIONS
3.1 INTRODUCTION 26
3.2 THE DESIGNS 26
3.2.1 The Design of Two Parallel Transmission Pairs 27
3.2.2 The Design of a Singly Twisted UTP Used as the Victim 28
3.2.3 The Design of Two Singly Twisted UTPs Used as the
Attacker and Victim 29
3.2.4 The Design of Unequal-spanned UTPs, a Singly Twisted
UTP and a Doubly Twisted UTP, Used as the Attacker
and Victim 30
3.2.5 The Design of a Doubly Twisted UTP Used as the Victim 31
3.2.6 The Design of Doubly Twisted UTPs Used as the
Attacker and Victim 33
3.2.7 The Design of Unequal-spanned UTPs, a Doubly Twisted
UTP and a Quadruply Twisted UTP, Used as the Attacker
and Victim 34
3.2.8 The Design of Quadruply Twisted UTPs Used as the
Attacker and Victim 35
3.2.9 The Design of Unequal-spanned UTPs, a Quadruply Twisted
UTP and a Singly Twisted UTP, Used as the Attacker
and Victim 36
3.3 THE SIMULATIONS 37
3.3.1 The Simulation of Two Parallel Transmission Pairs 37
3.3.2 The Simulation of a Singly Twisted UTP Used as the
Victim 38
3.3.3 The Simulation of two Singly Twisted UTPs Used as the
Attacker and Victim 39
3.3.4 The Simulation of Unequal-Spanned UTPs, a Singly Twisted
UTP and a Doubly Twisted UTP, Used as the Attacker
and Victim 40
3.3.5 The Simulation of a Doubly Twisted UTP Used as the
Victim 41
3.3.6 The Design of Doubly Twisted UTPs Used as the
Attacker and Victim 42
3.3.7 The Simulation of Unequal-Spanned UTPs, a Doubly Twisted
UTP and a Quarticly Twisted UTP, Used as the Attacker
and Victim 42
3.3.8 The Simulation of Quadruply Twisted UTPs Used as the
Attacker and Victim 43
3.3.9 The Simulation of Unequal-Spanned UTPs, a Quadruply
Twisted UTP and a Singly Twisted UTP, Used as the
Attacker and Victim 44
3.3.10 The Simulation of the Insertion Loss of the Design
Twisted Parts 45
3.3.11 The Discussion on the Difference between the Predictions
of Physical Principles and Outcomes from HFSS
Simulations 50
3.3.12 The Summary for the Theoretical Predictions and HFSS
Simulations 52
3.4 THE LAYOUTS 55
3.4.1 The Design Sketch 55
3.4.2 The Design Layouts 57
CHAPTER 4 IMPLEMEMNTATIONS AND MEASUREMENTS
4.1 INTRODUCTION 60
4.2 IMPLEMENTATIONS 60
4.3 MEASUREMENT EVIRONMENTS 61
4.4 MEASUREMENT RESULTS 63
4.4.1 The Result of Two Parallel Transmission Pairs 64
4.4.2 The Result of a Singly Twisted UTP Used as the Victim 65
4.4.3 The Result of Two Singly Twisted UTPs Used as the
Attacker and Victim 65
4.4.4 The Result of Unequal-Spanned UTPs, a Singly Twisted
UTP and a Doubly Twisted UTP, Used as the Attacker
and Victim 66
4.4.5 The Result of a Doubly Twisted UTP Used as the Victim 67
4.4.6 The Result of Doubly Twisted UTPs Used as the
Attacker and Victim 67
4.4.7 The Result of Unequal-Spanned UTPs, a Doubly Twisted
UTP and a Quadruply Twisted UTP, Used as the Attacker
and Victim 68
4.4.8 The Result of Quarticly Twisted UTPs Used as the
Attacker and Victim 69
4.4.9 The Result of Unequal-Spanned UTPs, a Quarticly Twisted
UTP and a Singly Twisted UTP, Used as the Attacker
and Victim 69
4.5 COMPARISONS AND CONCLUSIONS 70
CHAPTER 5 ACHIEVEMENTS AND FUTURE WORKS
5.1 ACHIEVEMENTS 74
5.2 FUTURE WORKS 74
REFERENCES 77

[1] S.H. Hall, G. W. Hall, and J. A. McCall, High-Speed Digital Design: A Handbook of Interconnect Theory and Design Practices, John Wiley & Sons, Inc., pp. 42-43, 1993.
[2] J. E. Muyshondt, et al, “Printed Circuit Board with an Integrated Twisted Pair Conductor,” U.S. Pat. No.5,646,368.
[3] X. Xu, S. Nitta, A. Mutoh, and S. Jayaram, “Study of Noise Characteristics of Multicondictor Twisted-pair Wire Circuit,” IEEE PRESS, pp. 259-264, 1996.
[4] D. A. Jones and D. Essig, “Integrated Circuits fir Data Transmission Over Twisted-Pair Channels,” IEEE J. Solid-StateCircuits, vol.32, no.3, pp. 398-406, Mar. 1997.
[5] Alina Deutsch, “Electrical Characteristics of Interconnections for High-Performance Systems,” in Proc. 1998 IEEE, vol.86, no.2, pp. 315-355, Feb. 1998.
[6] Z.Pantic-Tanner, E. Salgado, and F. Gisin, “Cross Coupling Between Powe and Signal Traces on Printed Circuit Board,” IEEE PRESS, pp. 624-640, 1998.
[7] S.Malisuwan and V. Ungvichian, “Crosstalk Analysis for Ultra-High-Speed Digital PCBs due to Substrate Permittivity, Pulse-Width, and Line-Length,” IEE EMC Conf., no.464, pp. 131-134, 1999.
[8] A. Benbassou, M. Bekkali, M.Rifi, and M. Benseddik, “Simultaneous Effect of Crosstalk and External EM Wave on the Functionning of Logical Components,” IEEE PRESS, pp. 943-947, 2001.
[9] N. Kim, M. Sung, H. Kim, S. Baek, W. Ryu, J. G.. An and J. Kim, “Reduction of Crosstalk Noise in Modular Jack for High-Speed Differential Signaling Interconneciton,” IEEE Tran. on Advanced Packaging, vol.24, no.3, pp. 260-267, Aug. 2001.
[10] Alina Deutsch, G..V. Kopcsay, P. W. Coteus, C. W. Survonic, P. E. Dahlen, D. L. Heckmann, and Dah-Weih Duan, “Frqeuncy-Dependent Losses on High-Performance Interconnections,” IEEE Tran. on Elecromagnetic Compatibility, vol.43, no.4, pp. 446-465, Nov. 2001.
[11] Alina Deutsch, G..V. Kopcsay, C. W. Survonic, P. W. Coteus, A. P. Lanzetta, T. Takken, and P. W. Bond, “Characterization and Performance Evaluation of Differential Shielded Cables for Multi-Gb/s Data-Rates,” IEEE Tran. on Advanced Packaging, vol.25, no.1, pp. 102-117, Feb. 2002.
[12] L. B. Gravelle and P. F. Wilson, “EMI/EMC in Printed Circuit Boards-A Literature Review,” IEEE Tran. on ElectromagneticCompatibility, vol.34, no.2, pp. 109-116, May. 2002.
[13] G. H. Im, K. M. Kang, and C. J. Park, “FEXT Cancellation for Twisted-Pair Transmission,” IEEE J. Selected Area in Communications, vol.20, no.5, pp. 959-973, Jun. 2002.
[14] Alina Deutsch, P..W. Coteus, G. V. Kopcsay, H. H. Smith, C. W. Surovic, B. L. Krauter, D. C. Edelsein, and P. J. Restle, “On-Chip Wiring Design Challenges for Gigahertz Operation,” in Proc. 1998 IEEE, vol.89, no.4, pp. 529-555, Apr. 2001.
[15] Sunli P. Khatri, Robert K. Brayton, and Alberto L. Sangiovanni-Vincentelli, Cross-Talk Noise Immune VLSI Design Using Regular Layout Fabrics, Kluwer Academic Publishers, pp. 12-24, 2001.
[16] Clayton R. Paul, Introduction to Electromagnetic Compatibility, John Wiley & Sons, Inc., pp. 593-598, 1992.
[17] Chan-Lung Wang, A Study of Electrical Characteristics of Unshielded Twisted Pair Cabling, Master Thesis, National Chiao Tung University, pp. 1-4, 2002.
[18] David K. Chen, Field and Wave Electromagnetics, Addison-Wesley, pp.233-310, 1989.
[19] D. G. Kam, H. Lee, and S. Baek, “GHz Twisted Differential Line Structure on Printed Circuit Board to Minimize and Crosstalk Noises,” IEEE International Conf. on Electronic Components and Technology, pp. 1058-1065, 2002.
[20] “0.35um LOGIC 3.3V SILICIDE DESIGN RULES,” Taiwan Semiconductor Manufacturing Co., LTD.
[21] “0.35um LOGIC SILICIDE(SPQM, 3.3V) SPICE MODELS,” Taiwan Semiconductor Manufacturing Co., LTD.
[22] David M. Pozar, Microwave Engineering, New York /Wiley, pp. 72, pp. 196-197, 1998.
[23] H.W. Johnson and M. Graham, High-Speed Digital Design: A Handbook of Black Magic, Prentice Hall, pp. 249-262, 1993.
[24] Z. Zhang, A. Pun, J. Lau, “Interference Issues in RFIC Design,” IEEE Radio Frequency Integrated Circuit Symposium, pp. 119-122, 1998.
[25] D.Clien, CMOS Layout: Concepts, Methodologies, and Tools, Newnes, pp. 26-27, 1999.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top