(18.206.12.76) 您好!臺灣時間:2021/04/23 09:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林孟亭
研究生(外文):Meng-Ting Lin
論文名稱:IEEE802.16a分時雙工正交分頻多重進接用於固定及行動無線通訊時之傳輸濾波與同步技術研究
論文名稱(外文):Fixed and Mobile Wireless Communication
指導教授:林大衛 老師
指導教授(外文):David W. Lin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:87
中文關鍵詞:OFDMASynchronizationTransmission filtering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:244
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
正交分頻多工 (OFDM) 技術可有效地解決通訊系統中的許多問題,如多重路徑衰落、窄頻干擾等,多用戶正交分頻多工 (multiuser OFDM) 系統能依據使用者之需求將頻寬作更有效之分配。此篇論文中我們依據IEEE 802.16a之規格對正交分頻多重進階 (OFDMA) 系統作探討,並提出了適用於OFDMA系統之傳輸濾波器與同步架構。
為了模擬多重路徑非整數點延遲的影響,我們在傳送端對訊號作四倍頻取樣,而後依照四倍頻取樣時間加入通道模擬。由於升餘弦平方根 (SRRC) 濾波器可使接收端經過濾波後之訊號不受到符元間干擾(inter-symbol interference),因此我們採用升餘弦平方根 (SRRC) 濾波器來濾除漏在使用頻帶之外的能量,使其符合802.16a之規定。
再者,我們針對上行與下行傳輸分別提出不同的同步架構。不論上行或下行傳輸都需要作時間同步以偵測信號到達的時間,如果估測錯誤會降低間格區間 (guard interval) 用來防止多重路徑延遲造成符元間 (ISI) 干擾的能力。此外,OFDM系統對載波頻率偏移非常敏感,些許偏移即可能造成次載波之間的正交性喪失,因而在下行傳輸中需對頻率偏移作同步處理。
我們將下行同步分為四級,第一、二級利用OFDM系統特有之間格區間(guard interval) 估測OFDM 符元(symbol) 開始時間與分數頻率偏移,此乃由於間格區間使單一符元內具有高度的自相關。第三級利用802.16a規範之保護頻帶 (guard bands) 及部分的嚮導載波 (pilot carrier) 判斷整數頻率偏移量。最後一級藉由下行傳輸前置資訊 (preamble) 判斷框位開始的時間。上行部分嘗試用兩種方式作時間同步,分別為在時間域及頻率域對收到的訊號與上行傳輸前置資訊 (preamble) 作相關性 (correlation) 分析,找到具有最大相關性的時間。我們針對加法性白色高斯雜訊 (AWGN) 及不同的都卜勒偏移衰減通道來模擬以分析同步架構之效能。

OFDM is an effective transmission scheme to cope with many transmission impairments, such as multipath fading and narrowband interference. Multiuser OFDM can provide highly flexible to allocate the bandwidth according to the needs of users. In this thesis, we study the OFDMA system according to IEEE 802.16a.
In order to simulate multipath delay at non-integer sample times, 4-times oversampling is applied to the signal at the transmitter so that we can add the channel effect according to 4-times oversampling time. For SRRC (square-root raised cosine) filter, there is no inter-symbol interference (ISI) introduced in the receiver. So we adopt a SRRC filter to suppress the out-of-band power to meet the power mask specified in 802.16a.
The DL (downlink) and UL (uplink) synchronization schemes are presented respectively. Time synchronization is performed to detect the start time of symbols for both DL and UL . Time synchronization errors would decrease the ability of guard interval to avoid ISI introduced by multipath channel. Moreover, OFDM system is very sensitive to carrier frequency offset that would possibly destroy the orthogonality between subcarriers. So we have to do frequency synchronization in the DL.
There are four stages in the DL synchronization. The first and second stages use the guard interval to estimate the OFDM symbol start time and fractional frequency offset. The reason of using the guard interval is that it provides strong autocorrelation within an OFDM symbol. The third stage uses the guard bands and partial pilot carriers (specified in 802.16a) to detect the integer frequency offset. The final stage determine when a new frame starts from the information of DL preamble. As for UL, we present two schemes to do time synchronization. One is using the correlation of received signal with UL preamble in the time domain and the other is in the frequency domain. The symbol start time is determined as the location with maximum correlation value. Simulation are taken in the AWGN (additive white Gaussian noise) channel and multipath fading channel under different Doppler shifts.

1 Introduction 1
2 Overview of OFDM and OFDMA 3
2.1 OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.1 Introduction to OFDM . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Mathematical Description of OFDM . . . . . . . . . . . . . . . 5
2.2 OFDMA System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Introduction to IEEE 802.16a 9
3.1 OFDMA Carrier Allocation . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.1 Downlink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.2 Uplink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 OFDMA Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Network Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.1 Scanning and Coarse Synchronization to the Network . . . . . . . 17
3.3.2 Obtain Transmission Parameters . . . . . . . . . . . . . . . . . . 17
3.3.3 Perform Ranging . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 System Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.1 Channel Coding . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.2 Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Usable System Parameters and Transmit Spectral Mask . . . . . . . . . . 24
3.5.1 Usable System Parameters . . . . . . . . . . . . . . . . . . . . . 24
3.5.2 Transmit Spectral Mask . . . . . . . . . . . . . . . . . . . . . . 26
4 System Environment and Transmission Filtering 28
4.1 System Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Channel Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.1 Downlink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2 Uplink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.3 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Transmission Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.1 Oversampling and SRRC Filter in the Transmitter . . . . . . . . . 34
4.3.2 Downsampling and SRRC Filter in the Receiver . . . . . . . . . 36
4.3.3 The Polyphase Technique . . . . . . . . . . . . . . . . . . . . . 38
4.3.4 Windowing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
v
5 Downlink Synchronization 47
5.1 Time Offset and Frequency Offset . . . . . . . . . . . . . . . . . . . . . 47
5.2 DL Synchronization Requirement and Approach . . . . . . . . . . . . . . 48
5.3 Initial DL Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3.1 Stage I: Symbol Time Synchronization . . . . . . . . . . . . . . 50
5.3.2 Stage II: Fractional Frequency Synchronization . . . . . . . . . . 51
5.3.3 Stage III: Integer Frequency Synchronization . . . . . . . . . . . 52
5.3.4 Stage IV: Frame Synchronization . . . . . . . . . . . . . . . . . 53
5.4 Normal Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.5 Simulation Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.5.1 Simulation Parameters and Environments . . . . . . . . . . . . . 56
5.5.2 DL Stage I : Symbol Time Synchronization . . . . . . . . . . . . 57
5.5.3 DL Stage II : Fractional Frequency Synchronization . . . . . . . 60
5.5.4 DL Stage III: Integer Frequency Synchronization . . . . . . . . . 65
5.5.5 DL Stage IV: Frame Synchronization . . . . . . . . . . . . . . . 66
6 Uplink Synchronization 71
6.1 UL Synchronization Requirement and Approach . . . . . . . . . . . . . . 71
6.2 UL Synchronization Scheme I: Using the Preamble by Frequency Domain
Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2.1 Stage I: Using CP Correlation Property . . . . . . . . . . . . . . 72
6.2.2 Stage II: Using Preamble . . . . . . . . . . . . . . . . . . . . . . 72
6.3 UL Synchronization Scheme II: Using the Preamble by Time Domain
Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.4 UL Synchronization Result . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.4.1 Scheme I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.4.2 Scheme II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.4.3 Comparison of UL Synchronization Scheme I and II . . . . . . . 78
7 Conclusion and Future Work 83
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

[1] ETSI, “Radio broadcasting systems: Digital Audio Broadcasting to mobile, portable
and fixed receivers,” European Telecommunication Standard, ETS 300—401, Feb.
1995.
[2] ETSI, “Digital Video Broadcasting: Framing structure, channel coding, and modulation
for digital terrestial television,” European Telecommunication Standard, EN
300—744, Aug. 1997.
[3] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications.
Boston: Artech House, 2000.
[4] D. Matiae, “OFDM as a possible modulation technique for multimedia application in
the range of mm waves,” http://www.ubicom.tudelft.nl/MMC/Docs/introOFDM.pdf.
[5] S. B. Weinstein and P. M. Ebert, “Data transmission by frequency-division multiplexing
using the discrete Fourier transform,” IEEE Trans. Commun. Technol., vol.
COM-19, pp. 628—634, Oct. 1971.
[6] IEEE Std 802.16a-2003, IEEE Standard for Local and Metropolitan Area Networks
─ Part 16: Air Interface for Fixed Broadband Wireless Access Systems ─ Amendment
2: Medium Access Control Modifications and Additional Physical Layer Specifications
for 2—11GHz. New York: IEEE, April 1, 2003.
85
[7] IEEE Std 802.16-2001, IEEE Standard for Local and Metropolitan Area Networks
─ Part 16: Air Interface for Fixed Broadband Wireless Access Systems. New York:
IEEE, April 2, 2002.
[8] http://WirelessMan.org/pub/backgrounder.html.
[9] I. Koffman and V. Roman, “Broadband wireless access solutions based on OFDM
access in IEEE 802.16,” IEEE Commun. Mag., vol. 40, no. 4, pp. 96—103, Apr. 2002.
[10] T. S. Rappaport, Wireless Communication: Principles and Practice. Upper Saddle
River, New Jersey: Prentice Hall, 1999.
[11] S.-L. Tsai, “Study and DSP implementation of 3GPP wideband-CDMA transmission
signal processing and wireless channel simulation,” M.S. thesis, Department of
Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.,
June 2002.
[12] P. Dent, G. E. Bottomley, and T. Croft, “Jakes’ fading model revisited,” Electron.
Lett. vol. 29, no. 13, pp. 1162—1163, June 1993.
[13] M. Goldhammer et al., “OFDM (FFT 256) fixed and mobile system considerations,”
IEEE 802.16e contribution — 03/07.
[14] A. V. Oppenhiem and R. W. Schafer, Discrete-Time Signal Processing. Upper Saddle
River, New Jersey: Prentice Hall, 1989.
[15] O. Edfors, M. Sandell, J. J. van de Beek, D. Landstrom, and F. Sjoberg, “An introduction
to orthogonal frequency-division multiplexing,” Research Report 1996:16,
Division of Signal Processing, Lulea University of Technology, Sep. 1996.
[16] J. J. van de Beek, et al., “ML estimation of time and frequency offset in OFDM
systems,” IEEE Trans. Signal Processing, vol. 45, no. 7, pp. 1800—1805, July 1997.
86
[17] J. J. van de Beek, P. O. Borjesson, M. L. Boucheret, D. Landstrom, J. M. Arenas,
P. Odling, C. Ostberg, M. Wahlqvist, and S. K. Wilson, “A time and frequency
synchronization scheme for multiuser OFDM,” IEEE J. Select. Areas Commun.,
vol. 17, pp. 1900—914, Nov. 1999.
[18] P. H. Moose, “A technique for orthogonal frequency-division multiplexing frequency
offset correction,” IEEE Trans. Commun., vol. 42, no. 10, pp. 2908—2914,
Oct. 1994.
[19] J. J. van de Beek, P. O. Borjesson, M. L. Boucheret, D. Landstromo J. M. Arenas, P.
Odling, and S. K.Wilson, “Three non-pilot-based time and frequency estimators for
OFDM,’ Research Report 1998:08, Division of Signal Processing, Lulea University
of Technology, Sep. 1998.
[20] W. D. Warner and C. Leung, “OFDM/FM frame synchronization for mobile radio
data communication,” IEEE Trans. Vehicular Tech., vol. 42, no. 3, pp. 302—313,
Aug. 1993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 203. 蘇俊雄著,〈違憲審查制度及憲法解釋效力之界限〉,月旦法學雜誌第42期,1998年11月。
2. 200. 蘇永欽著,〈結果取向的憲法解釋―從德國法律方法論的理論、實務淺析我國大法官會議實務〉,憲政時代第14卷第1期,1988年。
3. 199. 蘇永欽著,〈立法裁量與司法審查〉,憲政時代第26卷第2期,2000年10月。
4. 197. 羅名威著,〈德國違憲審查權對立法權的控制界限〉,憲政時代第24卷第2期,1998年10月。
5. 194. 蕭淑芬譯,市川正人著,〈日本違憲審查制之軌跡與特徵〉,月旦法學第98期,2003年7月。
6. 190. 鄭彥棻著,〈憲法第十三章之研究(上)〉,憲政時代第8卷第3期,1983年1月。
7. 189. 鄭彥棻著,〈五權憲法中的人民權利〉,憲政時代第5卷第3期,1980年1月。
8. 188. 鄭明德著,〈論我國憲法「前言」的性質與解釋〉,立法院院聞第29卷第1期,2001年1月。
9. 187. 鄭玉波著,〈憲法之解釋與人權〉,憲政時代第2卷第4期,1977年4月。
10. 186. 蔡維音著,〈德國基本法第一條「人性尊嚴」規定之探討〉,憲政時代第18卷第1期,1992年。
11. 185. 蔡維音著,〈社會福利制度之基礎理念及結構─以德國法制為中心〉,月旦法學雜誌第28期,1997年9月。
12. 184. 蔡茂寅著,〈社會權―生存權與勞動基本權〉,月旦法學第49期,1999年。
13. 183. 蔡茂寅著,〈社會法之概念、範疇與體系―以日本法制為例之比較觀察〉,政大法學評論第58期,1996年。
14. 182. 蔡宗珍著,〈我國憲法審判制度之檢討〉,月旦法學第98期,2003年7月。
15. 181. 蔡宗珍著,〈人性尊嚴之保障作為憲法基本原則〉,月旦法學雜誌第45期,1999年2月。
 
系統版面圖檔 系統版面圖檔