(3.237.20.246) 您好!臺灣時間:2021/04/15 10:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱睦喻
研究生(外文):Mu-Yu Chiu
論文名稱:用於JPEG2000編碼器之資料傳送及緩衝器設計之最佳化
論文名稱(外文):Optimal Data Transfer and Buffering Schemes for JPEG2000 Encoder
指導教授:任建葳任建葳引用關係
指導教授(外文):Chein-Wei Jen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:79
中文關鍵詞:JPEG2000資料傳送緩衝器匯流排
外文關鍵詞:JPEG2000Data TransferBufferingOCB
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在今日的靜態影像壓縮標準中,為了因應各種不同的需求,諸如運算能力、頻寬、有線及無線元件裡的記憶體等等,使得影像必須擁有可任意調整解析度和品質的功能。而JPEG2000就是被設計來符合這些需求的標準。它不但可以把這些需求放入一個獨立的位元串,也提供了許多以往標準所無法達成的特點。有鑒於資料的傳送和資料的儲存已經變成設計高速、低成本的影像處理架構裡最重要的關鍵,因此資料傳送及緩衝器設計的最佳化也就顯得更為重要。
在這篇論文中,我們提出了用於JPEG2000編碼器之資料傳送及緩衝器設計之最佳化。資料傳送的部分,我們結合了位元階級的zero run-length coding以及定址模式(addressing mode) 以降低離散小波轉換(DWT)和最佳斷點內嵌區塊編碼器(EBCOT)之間的傳輸次數,最多可降低到原本的35%。因此共用的系統匯流排可以盡量地保持空閒的狀態,使得整個系統的效能因此而得以提升。再者,資料傳送設計也可以幫助離散小波轉換和最佳斷點內嵌區塊編碼器之間的字元對位元平面轉換,並使得匯流排的資料寬度對影像品質和離散小波轉換的分解階層較不敏感。另一方面,藉著考慮上提式(Lifting-based) 離散小波轉換和最佳斷點內嵌區塊編碼器之間的編碼流程以及不同的設計參數,在離散小波轉換和字元對位元平面轉換所需使用的緩衝器最多可降低到原來的57%。

The different requirements of computing power, bandwidth and memory of wireless and wired devices, as well as emergence of diverse imaging applications, have made resolution scalability and quality scalability essential in today’s still image compression standards. JPEG2000 has been designed to support not only these requirements in a single bit stream but also a richest set of features that are not available by other standards. Due to the data transfer and storage have become the critical issues in designing high-speed and low-lost image-processing architectures, optimal data transfer and buffering schemes for JPEG2000 are essential.
In this thesis, we propose the optimal data transfer and buffering schemes for JPEG2000 encoder. The data transfer scheme combines bit-level zero run-length coding and addressing mode to reduce data transfer times between Discrete Wavelet Transform (DWT) and Embedded Block Coding with Optimized Truncation (EBCOT) to 35%. Therefore the shared bus can be kept as free as possible, which in turn leads to increasing the potentiality of improvement on system performance. Furthermore, this data transfer scheme also helps in word-to-bitplane data format conversion from DWT to EBCOT and makes the width of data bus less sensitive to the quality of image and the decomposition level of DWT. On the other hand, by jointly considering coding flow of both lifting-based DWT and EBCOT with different design parameters, the reduction in total buffer requirement for both DWT and the word-to-bitplane conversion between DWT and EBCOT can up to 57%.

CONTENTS I
LIST OF FIGURES III
LIST OF TABLES V
CHAPTER 1 INTRODUCTION 1
1.1 BACKGROUND 1
1.2 TRADITIONAL JPEG AND JPEG2000 2
1.3 MOTIVATION AND CONTRIBUTION 6
1.4 THESIS ORGANIZATION 7
CHAPTER 2 OVERVIEW OF JPEG2000 ENCODER SYSTEM 9
2.1 JPEG2000 FUNDAMENTAL BUILDING BLOCKS 9
2.2 PRE-PROCESSING 10
2.3 DISCRETE WAVELET TRANSFORM (DWT) 12
2.3.1 The 1-D DWT 12
2.3.2 The 2-D DWT 14
2.3.3 Lifting-based wavelet transform 16
2.4 SCALAR QUANTIZATION 17
2.5 EMBEDDED BLOCK CODING WITH OPTIMIZED TRUNCATION (EBCOT) 18
CHAPTER 3 BUFFERING SCHEME 21
3.1 BUFFER REQUIREMENT IN EACH BLOCK 21
3.2 BUFFER ANALYSIS 25
3.2.1 Line-based DWT 27
3.2.2 Z-scan DWT 32
3.2.3 Optimal Z-scan DWT 35
3.3 SUMMARY 41
CHAPTER 4 DATA TRANSFER SCHEME 45
4.1 INTRODUCTION TO ON-CHIP BUS (OCB) 45
4.2 PRINCIPLES FOR DATA TRANSFER SCHEME 46
4.3 DATA TRANSFER SCHEME FOR JPEG2000 48
4.4 SUMMARY 54
CHAPTER 5 HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULT 55
5.1 IMPLEMENT OF JPEG2000 ARCHITECTURE 55
5.1.1 DWT architecture 56
5.1.2 Architecture of Word-to-Bitplane Resequencing 63
5.1.3 Bus Interface with Proposed Data Transfer Scheme 66
5.1.4 Hardware implementation 66
5.2 EXPERIMENTAL RESULT 68
5.2.1 Comparison of alternative transferred data types 68
5.2.2 Comparison of RLC and ZRLC 69
5.2.3 Summary 70
CHAPTER 6 CONCLUSIONS 73
APPENDIX 75
REFERENCES 77

[1] D. Taubman, “High Performance Scalable Image Compression with EBCOT,” Proc. of IEEE International Conference on Image Processing (ICIP), Kobe, Japan, 1999, vol. 3, pp. 344-348.
[2] D. Taubman, “High Performance Scalable Image Compression with EBCOT,” IEEE Trans. on Image Processing, vol. 9, issue 7, pp.1158 —1170, July 2000
[3] ISO/IEC JTC 1/SC 29/WG 1 N1646, “JPEG2000 PartⅠ Final Committee Draft Version 1.0,” March 2000.
[4] ISO/IEC JTC 1/SC 29/WG 1 N1894, “JPEG 2000 Verification Model 8.6 (Technical Description),” 2000.
[5] C. Christopoulos, A. Skodras, and T. Ebrahimi, “The JPEG 2000 Still Image Coding System: An Overview,” IEEE Trans. on Consumer Electronics, vol. 46, no. 4, pp.1103-1127, November 2000.
[6] D. Santa-Cruz, T. Ebrahimi, “An Analytical Study of JPEG 2000 Functionalities.” IEEE International Conference on Image Processing, vol. 2, pp. 49-52, 2000.
[7] Khalid Sayood, Introduction to Data Compression, Morgan Kaufmann Publishers
[8] P. Meerwald, R. Norcen, A. Uhl, Univ. Salzburg, “Cache Issues with JPEG2000 Wavelet Lifting,” Visual Communication and Image Processing, vol. 2, pp. 626-634, 2002.
[9] P. R. Panda, N. D. Dutt, “Low-power Memory Mapping through Reducing Address Bus Activity,” IEEE Trans. VLSI Syst, Volume: 7, pp. 309—320, Sept. 1999.
[10] F. Catthoor, F. Franssen, S. Wuytack, L. Nachtergaele, and H. D. Man, “Global Communication and Memory Optimizing Transformations for Low Power Signal Processing Systems,” in VLSI Signal Processing VII, pages 178—187, 1994.
[11] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele, and A. Vandecapelle, Custom Memory Management Methodology ─Exploration of Memory Organization for Embedded Multimedia System Design, Kluwer, Boston, 1998.
[12] ARM Ltd., “AMBA 2.0 Specification,” 1999.
[13] W.-H. Chang, Y.-S. Lee, W.-S. Peng, C.-Y. Lee, “A Line-based, Memory Efficient and Programmable Architecture for 2D DWT Using Lifting Scheme,” IEEE International Symposium on Circuits and Systems, vol. 4, pp. 330-333, 2001.
[14] P.-C. Tseng, C.-T. Huang, L.-G. Chen, “Generic RAM-based Architecture for Two-dimensional Discrete Wavelet Transform with Line-based Method,” 2002 Asia-Pacific Conference on Circuits and Systems, APCCAS '02. , vol. 1, pp. 363 -366, Oct. 2002.
[15] Y.-T. Hsiao, H.-D. Lin, K.-B. Lee, C.-W. Jen, “High-speed Memory-saving Architecture for the Embedded Block Coding in JPEG2000,” IEEE International Symposium on Circuits and Systems, vol. 5, pp. 122-136, 2002.
[16] Alma Technologies, “JPEG 2000 Encoder Datasheet,” May 2002. Available on http://www.alma-tech.com/products_list.htm.
[17] W. Sweldens, “The Lifting Scheme: A Custom-design Construction of Biorthogonal Wavelets,” Appl. Comput. Harmon. Anal., vol. 3, no.15, pp. 186-200, 1996.
[18] C. Chrysafis and A. Ortega, “Line-based, Reduced Memory, Wavelet Image Compression,” IEEE Trans. Image Processing, vol. 9, no. 3, pp. 378-389, Mar. 2000.
[19] S. Athanassios, C. Charilaos, E. Touradj, “The JPEG 2000 Still Image Compression Standard,” IEEE Signal Processing Magazine , vol. 18 ,no. 5, pp. 36-58, Sep 2001.
[20] R. Majid, T. Rajan, “An overview of the JPEG 2000 Still Image Compression Standard,” Signal Processing: Image Communication.
[21] C. Christopoulos, A. Skodras, and T. Ebrahimi. “The JPEG2000 Still Image Coding: An Overview,” IEEE Trans. on Consumer Electronics, Vol. 46, No. 4, pp. 1103-1127, Nov 2000.
[22] D. Santa-Cruz, T. Ebrahimi, J. Askelof, M. Larsson, C. Christopoulos, “JPEG 2000 Still Image Coding Versus other Standards,” ISO/IEC JTC1/SC29/WG1 (ITU-T SG8), July 2000.
[23] C. A. Christopoulos, J. Askelof, M. Larsson, “Efficient Methods for Encoding Regions of Interest in the Upcoming JPEG 2000 Still Image Coding Standard,” IEEE Signal Processing Lett., vol. 7, pp. 247-249, Sep. 2000.
[24] C. A. Christopoulos, J. Askelof, and M. Larsson, “Efficient Encoding and Reconstruction of Region of Interest in JPEG 2000,” in Proc. X European Signal Processing Conf. (EUSIPCO-2000), Tampere, Finland, Sep. 2000, pp. 1133-1136.
[25] C. A. Christopoulos, J. Askelof, and M. Larsson, “Efficient Region of Interest Encoding Techniques in the Upcoming JPEG 2000 Still Image Coding Standard,” in Proc. IEEE Int. Conf. Image Processing (ICIP 2000), vol. II. Vancouver, Canada, Sep. 2000, pp. 41-44.
[26] B. E. Usevitch, “ A Tutorial on Modern Lossy Wavelet Image Compression: Foundations of JPEG 2000,” in Proc. IEEE Int. Conf. Image Processing, Vancouver, Canada, Sep. 2000, vol II, pp. 33-36.
[27] K. Andra, C. Chakrabarti, T. Acharya, “A High-performance JPEG2000 Architecture”, IEEE Trans. Circuits Syst. Video Technol., Vol. 3, pp. 209-218, Mar., 2003.
[28] W. Jiang and A. Ortega, “Lifting Factorization-based Discrete Wavelet Transform Architecture Design,” IEEE Trans. Circuits Syst. Video Technol., vol. 11, pp. 651—657, May 2001.
[29] Analog products─JPEG2000 codec, ADV-JP2000. Available on http://products.analog.com/products/info.asp?product=ADV%2DJP2000
[30] Amphion products─JPEG2000 encoder, CS6510. Available on http://www.amphion.com/cs6510.html
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔