(3.238.88.35) 您好!臺灣時間:2021/04/11 17:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳建羽
研究生(外文):Chine-Yu Chen
論文名稱:5.8GHzCMOS低雜訊放大器的設計及新穎的雜訊模型之研究
論文名稱(外文):The Design of A 5.8GHz CMOS Low Noise Amplifier and A Novel Noise Model of MOSFET
指導教授:荊鳳德
指導教授(外文):Albert Chin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:78
中文關鍵詞:低雜訊放大器雜訊模型CMOS阻抗匹配雜訊匹配
外文關鍵詞:LNAlow noise amplifiernoise modelCMOSimpedance matchnoise match
相關次數:
  • 被引用被引用:0
  • 點閱點閱:150
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
由於現今矽電晶體的高度發展,其閘極長度亦隨之縮小,使得其元件在微波電路的設計上,漸漸受到RF工程師的關注與討論。為了要確保電路在高頻時仍有我們所需的特性並且縮短設計的週期,精確的元件模型的建立是必要且不可缺乏的。本論文實現矽高頻電晶體的高頻模型並針對高頻的最小雜訊指數與閘極數目之間的關係提出一初步的說明:高頻的最小雜訊指數是與電晶體本身的雜訊及電晶體主動區外部閘極至基底的損耗的交互效應有關。並用一新穎的雜訊模型模擬之。由以上的研究,找出了最低雜訊指數的電晶體大小,並將它實現在低雜訊放大器的輸入電晶體。再者,我們分析了源極電感回授之架構,並分別說明它對 和 以及對增益圓和雜訊圓的影響。最後,實現了一5.8GHz採用源極電感回授的低雜訊放大器來印證我們的論點。

Recent advances in Si MOSFET’s with a submicrometer gate length have made these devices an attractive candidate for RF designers to implement in microwave circuits.
In order to ensure the circuit performance for the required frequency bands and also shorten the design cycle, device models are very critical. This thesis accomplishes the high frequency model of RF Si MOSFET and interprets the relationship between and gate finger number at high frequency: the total at high frequency is related to the combined effect of the MOSFET and gate to substrate loss outside the active region. And a novel noise model of MOSFET is developed and simulated to confirm our opinion. From above, the MOSFET size with minimum noise figure is presented and used later as the input stage of the LNA. Furthermore, the architecture of source degeneration is analyzed in terms of and as well as gain circle and noise circle. Finally, a 5.8GHz CMOS low noise amplifier with source degeneration is designed and measured to confirm our investigation.

Contents
Abstract (in Chinese)........................................i
Abstract (in English).......................................ii
Acknowledgement.............................................iv
Contents.....................................................v
Figure caption.............................................vii
Chapter 1 Introduction.
1.1 Introduction..............................................1
1.2 The RF Modeling of MOSFET and Low Noise Amplifier Design..1
1.3 Motivation and Object in the study........................3
1.4 Organization..............................................4
Chapter 2 The Analysis and Modeling of RF MOSFET
2.1 Introduction..............................................6
2.2 The Parameter Extraction of the BSIM3V3 Model.............6
2.3 The Extraction of RF Model...............................10
2.4 Noise Analysis and Model of RF MOSFET....................15
Chapter 3 The low noise design of the LNA
3.1 Introduction.............................................36
3.2 The Description of Noisy Two-ports network...............36
3.3 Simultaneous Input Impedance and Noise Match with Source
Degeneration.............................................40
Chapter 4 Simulated Results and Experiment
4.1 Introduction.............................................59
4.2 The Design of 5.8GHz LNA.................................59
4.3 Simulation Results and Experiment........................62
Chapter 5 CONCLUSION......................................72
REFERENCES...................................................74

[1] Derek K. Shaeffer, Student Member, IEEE, and Thomas H. Lee, Member, IEEE, “A 1.5-V, 1.5-GHz CMOS Low Noise Amplifier,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 32, NO. 5,pp.745~759, MAY 1997
[2] Francesco Gatta, Student Member, IEEE, Enrico Sacchi, Member, IEEE, Francesco Svelto, Member, IEEE,Paolo Vilmercati, and Rinaldo Castello, Fellow, IEEE, “A 2-dB Noise Figure 900-MHz Differential CMOS LNA,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 10, pp.1444~1452, OCTOBER 2001
[3] Ramez A. Rafla and Mourad N. El-gamal, “2.4-5.8GHz CMOS LNA’s Using Integrated Inductors,” Proc. 43nd IEEE Midwest Symp. On Circuit and Systems. Lansing MI, pp.302~304, Aug 8~11, 2000
[4] Chih-Ming Hng, Brian A. Floyd and Kenneth K.O, “A Fully Integrated 5.35-GHz CMOS VCO and A Prescaler,” IEEE Radio Frequency Integrated Circuits Sym., pp.69~72, 2000
[5] C.J. Debono, F.Maloberti, J.Micallef, “A 900MHZ, 0.9V Low-power CMOS Downconversion Mixer,” IEEE Custom Integrated Circuits Conference, pp.24-4-1~4 2001
[6] Ichiro Aoki, Scott D. Kee, David Rutledge, and Ali Hajimiri, “A 2.4GHz, 2.2-W, 2-V Fully-Integrated CMOS Circular-Geometry Active-Transformer Power Amplifer,” IEEE Custom Integrated Circuits Conference, pp.4-4-1~4, 2001
[7] Hirad Samavati, Student Member, IEEE, Hamid R. Rategh, Student Member, IEEE, and Thomas H. Lee, Member, IEEE, “A 5-GHz CMOS Wireless LAN Receiver Front End,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 35, NO. 5, MAY 2000
[8] Kenneth K.O, Xi Li, Feng-Jung Huang, and William Foley, “CMOS Components for 802.11b Wireless LNA Applications,” IEEE Radio Frequency Integrated Circuits Symp., pp.103~106, 2002
[9] J.H. Huang, Z.H. Liu, M.C. Jeng, P.K. Ko, C. Hu, “A Robust Physical and Predictive Model for Deep-Submicrometer MOS Circuit Simulation,” IEEE Custom Integrated Circuits Conference, pp.14.2.1~4, 1993
[10] N. Shiga, S. Nakajima, K. Otobe, T. Sekiguchi, N. Kuwata, K-i. Matsyzajum and H.Hayashi, “X band MMIC amplifier with pulsed doped GaAs MESFETs,” IEEE Trans. Microwave Theory Tech, vol.39, no.12 pp.1987-1993, Dec.1991
[11] Rothe, H. & Dahlke, W. “Theory of noisy fourpoles,” Proc .IRE, vol.44, pp.811~818, June 1956
[12] K. Niclas, “Noise in broad-band GaAs MESFET amplifiers with parallel feedback,” IEEE Trans. Microwave Theory Tech., vol MTT-30, pp.63~70, Jan. 1982
[13] R. W. Thill, W. Kennan, and N. K. Osbrink, “A low-noise GaAs FET preamplifier for 21GHz satellite earth terminals,” Microwave J., pp.75~84, Mar. 1983
[14] Daniel P. Foty, “MOSFET Modeling with SPICE Principles and Practice,” Prentice Hall Inc., 1997
[15] Jeremy Everard, “Fundamentals of RF Circuit Design,” University of York, UK, 2001
[16] Yi-Jen Chan, Chia-Hung huang, Chung-Chian Weng, and BoonKhim Liew, “Characteristics of Deep-submicrometer MOSFET and Its Empirical Nonlinear RF Model,” IEEE Trans. On Microwave Theory and Tech., vol.46, NO.5, pp.611-615, MAY 1998
[17] David Lovelace, Julio Costa and Natalino Camilleri, “Extracting Small-Signal Model Parameters of Silicon MOSFET Transistors,” IEEE MTT-S Digest, pp.865~868, 1994
[18] C. h. Hunag, C. H. Lai, J. C. Hsieh, and J. Liu, and Albert Chin, “RF Noise in Deep Sub-um MOSFETs and Proposed Solution,” Device Research Conference, 2002. 60th DRC. Conference Digest,pp.71-72, 2002
[19] Triantis, D.P.; Birbas, A.N.; Kondis, D “Thermal noise modeling for short-channel MOSFETs,” Electron Devices, IEEE Transactions on , Volume: 43 Issue: 11 , pp.1950 —1955, Nov 1996
[20] Manku, T. “Microwave CMOS-device physics and design,” IEEE Journal of
Solid-State Circuits, Volume: 34 Issue: 3 , pp.277 —285, Mar 1999
[21] A. van der Ziel, Noise in solid State Devices and Circuits. New York: Wiley,
1986
[22] D. P. Trantis, A. N. Birbas, and S. E. Plevridis, “Induced noise modeling in MOSFET’s revisited-The submicron case,” Solid-state Electron., vol.41, pp.1950-1955, 1996
[23] Tsakas, E.F.; Birbas, A.N., “Noise associated with interdigitated gate structures in RF submicron MOSFETs,” Electron Devices, IEEE Transactions on , Volume: 47 Issue: 9, pp.1745-1750, Sep 2000
[24] Yi Lin; Obrecht, M.; Manku, T. “RF noise characterization of MOS devices for LNA design using a physical-based quasi-3-D approach,” Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on , Volume: 48 Issue: 10, 99.972-984, Oct 2001
[25] G. Gonzalez, Microwave Transistor Amplifiers. Englewood Cliffs. NJ: Prentice-Hall, 1997
[26] Rothe, H. & Dahlke, W.: “Theory of noisy fourpoles,” Proc. IRE, vol. 44, pp.811~818, June 1956
[27] Engberg, “Simultaneous input power match and noise optimization using feedback,” in Dig. Tech. Pap. Fourth Eur. Microwave Conf. Pp.385~389, Sept. 1974
[28]R. A. Pucel, H. A. Haus, and H. Statz, Advances in Electronics and Electron Physics. New York: Academic, pp.195~265, 1975
[29]A. Cappy, “Noise modeling and measurement techniques,” IEEE Trans. Microwave Theory Tech., vol. 36, no.1, pp.1-10, Jan.1988
[30]Hatsuaki Fukui, “Optimal Noise figure of microwave GaAs MESFET’s,” IEEE Electron Devices, vol. ED-26, pp.1032~1037, July 1979
[31] Floyd, B.A.; Mehta, J.; Gamero, C.; Kenneth, K.O., “A 900-MHz, 0.8-μm CMOS low noise amplifier with 1.2-dB noise figure,” Custom Integrated Circuits, Proceedings of the IEEE, pp.661-664, 1999

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔