|
[1.1.1] Y. Taur, and T. H. Ning, “Fundamentals of modern VLSI devices, “.Cambridge University Press, 1998, pp. 280-285. [1.1.2] K. T. Chan, A. Chin, Y. B. Chen, Y.-D. Lin, D. T. S. Duh, and W. J. Lin, “Integrated Antennas on Si and Si-on-Quartz up to 20GHz,” International Electron Devices Meeting (IEDM), 2001, pp. 763-766. [1.1.3] F. Hayashi, H. Ohkubo, T. Takahashi, S. Horiba, K. Noda, T. Uchida, T. Schimizu, N. Sugawara, and S. Kumashiro, “A highly stable SRAM memory cell with top-gated P -N grain poly-Si TFTs for 1.5 V operation,”in IEDM Tech. Dig., 1996, pp. 283—286. [1.1.4] I.W.Wu, “Cell design considerations for high-aperture-ratio direct-view and projection polysilicon TFT-LCDs,” in SID Dig. Tech. Papers, 1995, pp. 19—22. [1.1.5] H. Kuriyama, Y. Ishigaki, Y. Fujii, S. Maegawa, S. Maeda, S. Miyamoto, K. Tsutsumi, H. Miyoshi, and A. Yasuoka, “A C-switch cell for lowvoltage and high-density SRAMs,” IEEE Trans. Electron Devices, vol. 45, pp. 2483—2488, Dec. 1998. [1.1.6] A. Nakamura, F. Emoto, E. Fujii, and A. Tamamoto “A high-reliability, low- operation-voltage monolithic active-matrix LCD by using advanced solid-phase growth technique,” IEDM Tech. Dig., pp. 847, 1990. [1.1.7] N. Kubo, N. Kusumoto, T. Inushima, and S. Yamazaki, “Characterization of polycrystalline-Si thin film transistors fabricated by excimer laser annealing method,” IEEE Trans. Electron Devices, vol. 40, pp. 1876-1879, 1994. [1.1.8] S. W. Lee, T. H. Ihn, and S. K. Joo, “Fabrication of high-mobility p-channel poly-Si thin film transistors by self-aligned metal-induced lateral crystallization,” IEEE Electron Device Lett., vol. 17, no. 8, pp. 407-409, 1996. [1.2.1] R. B. van Dover, R. M. Fleming, L.F. Schneemeyer, G. B. Alers and D. J. Werder, "Advanced dielectrics for gate oxide, DRAM and RF capacitors," in IEDM Tech. Dig., 1998, pp.297-02. [1.2.2] T. P. Ma, "High-k gate dielectrics for scaled CMOS technology," in Solid-State and Integrated-Circuit Technology, 2001, pp.297-02. [1.2.3] S. A. Campbell, D. C. Gilmer, Wang Xiao-Chuan, Hsieh Ming-Ta, Hyeon-Sag Kim, W. L. Gladfelter and Jinhua Yan, "MOSFET transistors fabricated with high permittivity TiO2 dielectrics," IEEE Electron Device Lett., 22, pp.104-109, 1997. [1.2.4] C. Hobbs, R. Hegde, B. Maiti, H. Tseng, D. Gilmer, P. Tobin, O. Adetutu, F. Huang, D. Weddington, R. Nagabushman, D. O''Meara, K. Reid, L. La. L. Grove and M. Rossow, "Sub-quarter micron CMOS process for TiN-gate MOSFETs with TiO2 gate dielectric formed by Titanium oxidation," in Symp. On VLSI Technology, 1999, pp. 133-134. [1.2.5] Ma Tieshong, S. A. Campbell,R. Smith, N. Hilien, He Boyong, W. L. Gladfelter, C. Hobbs, D.Buchanan, C. Tayor, M. Gribelyuk, M. Tiner, M. Coppel and Lee Jang Jung, "Group IVB metal oxides high permittivity gate insulators deposited from anhydrous metal nitrides," IEEE Electron Devices Letter. 48, pp. 2348. [1.2.6] K. Onishi, K. Shiozawa, Y. Tokuda and S. Satoh, "simulation study on comparison between metal gate and polysilicon gate for sub-quarter micron MOSFETs, "IEEE Electron Device Lett., 20, pp. 632-634, 1999. [1.2.7] H. J. Cho, C. S. Kang, K. Onishi, S. Gapalan, R. Nieh, R. Choi, E. Dharmarajan and J. C. Lee, "Novel nitrogen profile engineeringnfor improved TaN/HfO2 Si MOSFET performances," in IEDM Tech. Dig. 2001, pp.30.2.1-30.2.4. [1.2.8] L. Manchanda, B. Busch, M. L. Green, M. Morris, R. B. van Dover, R. Kwo and S. Aravanmudhan, "High K gate dielectrics for the silicon industry," in Gate Insulator, 2001, pp. 56-60. [1.2.9] G. Wilk, R. M. Wallance and J. M. Anthony, "Hafnium and Zirconium Silicates for advanced gate dielectrics, "J. Applied Physics, 87, pp. 484-492, 2000. [1.2.10] A. Chin, Y. H. Wu, S. B. Chen, C. C. Liao, and W. J. Chen, “High quality La2O3 and Al2O3 gate dielectrics with equivalent oxide thickness 5-10Å,” in Symp. on VLSI Tech., 2000, pp. 16-17. [1.3.1] Frédérique Ducroquet, Hervé Achard, Fabien Coudert, Bernard Prévitali, Jean-François Lugand, Laurent Ulmer, Thierry Farjot, Yveline Gobil, Michel Heitzmann, Serge Tedesco, Marie-Elisabeth Nier, and Simon Deleonibus, ". Sub-0.1-mm Metal Gate Devices For ULSI Applications," IEEE TRANSACTIONS ON ELECTRON DEVICES, 48, 2001, pp. 1816-1821. [1.3.2] Hiroyuki Shimada, Ichiro Ohshima, Shi-Ichi NaKao, Munekatsu Nakagawa, Kei Kanemoto, Masaki hirayama, Shigetoshi Sugawa and Tadahiro Ohmi, " Low resistivity bbs-Ta/TaNx metal gate MNOSFETs ajvinf plane gate structure featuring fully low-temperature processing below 450 oC," in Symp. On VLSI Techonology Dig., 2001, pp.67-68. [1.3.3] Ronald Lin, Qiang Lu, Pushkar Ranade, Tsu-Jae King, and Chenming Hu, "An Adjustable Work Function Technology Using Mo Gate for CMOS Devices," IEEE ELECTRON DEVICE LETTERS, 3, 2002, pp.49-51. [1.3.4] Igor Polishchuk, Pushkar Ranade, Tsu-Jae King, and Chenming Hu, "Dual Work Function Metal Gate CMOS Technology Using Metal Interdiffusion," IEEE ELECTRON DEVICE LETTERS, 22, 2001, pp. 444-446. [1.3.5] Huicai Zhong, Shin-Nam Hong, You-Seo Suh, Heather Lazer, Greg Ileuss and Veena Misra, "Properties of Ru-Ta Alloys as Gate Electrodes For NMOS and PMOS Silicon Devices," in IEDM Tech. Dig. 2001, pp.467-470. [1.4.1] M. H. Ahmed, "Recent Trends in Photonics," IEEE Workshop of Teaching Photonics, 1999. [1.4.2] Shuji Komuro, Tooru Katsumata, Takitaro Morikawa, Xinwei Zhao, Hideo Isshiki, and Yoshinobu Aoyagi, ŕ.54 mm emission dynamics of erbium-doped zinc-oxide thin films," Applied Physics Letters, 26, 2000, pp. 3935-3937. [1.4.3] Jung H. Shin, Won-hee Lee, and Hak-seung Han, ŕ.54 mm Er3+ photoluminescent properties of erbium-doped Si/SiO2 superlattices, " Applied Physics Letters, 15, 2000, pp.1573-1575. [2.1.1] M. K. Hatalis, and D. W. Greve, “Large grain polycrystalline silicon by low-temperature annealing of low pressure chemical vapor deposited amorphous silicon films,” J. Appl. Phys., vol. 63, pp. 2260-2266, 1988. [2.1.2] Y. W. Choi, J. N. Lee, T. W. Jang, and B. T. Ahn, “Thin-film transistors fabricated with poly-Si films crystallized at low temperature by microwave annealing,” IEEE Electron Device Lett., vol. 20, no. 1, pp. 2-4, 1999. [2.1.3] Z. Jin, H. S. Kwok, and M. Wang, “Performance of thin-film transistors with ultrathin Ni-MILC polycrystalline silicon channel layers,” IEEE Electron Device Lett., vol. 20, no. 4, pp. 167-169, 1999. [2.1.4] S. W. Lee, T. H. Ihn, and S. K. Joo, “Fabrication of high-mobility p-channel poly-Si thin film transistors by self-aligned metal-induced lateral crystallization,” IEEE Electron Device Lett., vol. 17, no. 8, pp. 407-409, 1996. [2.1.5] T. Sameshima, M. Sekiya, and S. Usui, “XeCl excimer laser annealing used in the fabrication of poly-Si TFT’s,” Late News Abst. ICSSDM, pp. 12-13, 1985. [2.1.6] A. Hara, and N. Sasaki, “ Limit of the mobility enhancement of the excimer-laser-crystallized low-temperature poly-Si TFTs,” in IEDM Tech. Dig., pp. 301-304, 1999. [2.1.7] Y. H. Lin, Y. H. Wu, A. Chin, and F. M. Pan “The effect of copper on gate oxide integrity,” J. Electrochem. Soc , vol. 147, pp. 4305-4307, 2000.. [2.1.8] Y. H. Lin, Y. C. Chen, K. T. Chan, F. M. Pan, I. J. Hsieh, and A. Chin, “The strong degradation on 30 Å oxide integrity contaminated by copper,” J. Electrochem. Soc., vol. 148, F73-75, 2001. [2.1.9] H. C. Lin, E. C. Kan, T. Yamanaka, and C. R. Helms, in Symp. VLSI Tech., 1997, pp.43-44. [2.1.10] A. Chin, B. C. Lin, W. J. Chen, Y. B. Lin, and C. Tsai, “The Effect of Native oxide on Thin Gate Oxide Integrity,” IEEE Electron Device Lett. 19, pp. 426-428, 1998. [2.1.11] A. Chin, C. C. Liao, C. H. Lu, W. J. Chen, and C. Tsai, “Device and reliability of high-k Al2O3 gate dielectric with good mobility and low Dit,” in Symp. on VLSI Tech., 1999, pp. 135-136. [2.1.12] T. I. Kamins and B. P. V. Herzen, IEEE Electron Devices Lett, 2, 1981, pp.313-315. [2.1.13] C. W. Lin, M. Z. Yang, C. C. Yeh, L. J. Cheng, T. Y. Huang, H. C. Cheng, H. C. Lin, T. S. Chao, and C. Y. Chang, “ Effects of plasma treatments, substrate types, and crystallization methods on performance and reliability of low temperature polysilicon TFTs,” in IEDM Tech. Dig., 2000, pp. 305-308. [3.1.1] C. H. Lee, J. J. Lee, W. P. Bai, S. H. Bae, J. H. Sim, X. Lei, R. D. Clark, Y. Harada, M. Niwa, and D. L. Kwong, “Self-aligned ultra thin HfO2 CMOS transistors with high quality CVD TaN gate electrode,” in Symp. on VLSI Technology, 2002, pp. 82-83. [3.1.2] K. Onishi, C. S. Kang, R. Choi, H. J. Cho, S. Gopalan, R. Nieh, E. Dharmarajan, and J. C. Lee, “Reliability characteristics, including NBTI, of polysilicon gate HfO2 MOSFET’s,” in IEDM Tech., Dig., 2001, pp. 659-662. [3.1.3] K. Onishi, C. S. Kang, R. Choi, H. J. Cho, S. Gopalan, R. Nieh, R. Krishnan, and J. C. Lee, “ Effect of high temperature forming gas anneal on HfO2 MOSFET Performance,” in Symp. on VLSI Technology, 2002, pp. 22-23. [3.1.4] A. Chin, C. C. Liao, C. H. Lu, W. J. Chen, and C. Tsai, “Device and reliability of high-k Al2O3 gate dielectric with good mobility and low Dit,” in Symp. on VLSI Tech.,1999, pp. 135-136. [3.1.5] A. Chin, Y. H. Wu, S. B. Chen, C. C. Liao, W. J. Chen, “High quality La2O3 and Al2O3 gate dielectrics with equivalent oxide thickness 5-10Å,” in Symp. on VLSI Tech.,2000, pp. 16-17. [3.1.6] A. Chin, C. S. Liang, C. Y. Lin, C. C. Wu, and J. Liu, “Strong and efficient light emission in ITO/Al2O3 suprelattice tunnel diode,” in IEDM Tech. Dig., 2001, pp. 171-174. [3.1.7] Y. C. Yeo, P. Ranade, T. J. King, and C. Hu, “Effects of high-k gate dielectric materials on metal and silicon gate workfunctions,” IEEE Electron Device Lett., vol. 23, no. 6, pp. 342 -344, 2002. [3.1.8] Y. C. Yeo, P. Ranade, Q. Lu, R. Lin, T. J. King, and C. Hu, “Effects of high K dielectrics on the workfunctions of metal and silicon gates” in Symp. on VLSI Technology, 2001, pp. 49-50. [3.1.9] Y. C. Yeo, Q. Lu, P. Ranade, H. Takeuchi, K. J. Yang, I. Polishchuk, T. J. King, C. Hu, S. C. Song, H. F. Luan, and D. L. Kwong, ” Dual-metal gate CMOS technology with ultrathin silicon nitride gate dielectric, ” IEEE Electron Device Lett., vol. 22, no. 5, pp. 227 -229, 2001. [3.1.10] I. Polishchuk, P. Ranade, T. J King, and C. Hu, ”Dual work function metal gate CMOS transistors by Ni-Ti interdiffusion, ” IEEE Electron Device Lett. vol. 23, no. 4, pp. 200-202, 2002. [3.1.11] H. Zhong, S. N. Hong, Y. S. Suh, H. Lazar, G. Heuss and V. Misra, “Properties of Ru-Ta Alloys as Gate Electrodes For NMOS and PMOS Silicon Devices, in IEDM Tech. Dig., 2001, pp. 467-470. [3.1.12] B. Tavel, T. Skotnicki, G. Pares, N. Carrière, M. Rivoire, F. Leverd, C. Julien, J. Torres, and R. Pantel, “Totally silicided (CoSi2) polysilicon: a novel approach to very low-resistive gate (~2W/) without metal CMP nor etching,” in IEDM Tech. Dig., 2001, pp. 815-828. [3.1.13] Y. H. Wu, W. J. Chen, S. L. Chang, A. Chin, S. Gwo, and C. Tsai, “Improved electrical characteristics of CoSi2 using HF-vapor pretreatment,” IEEE Electron Device Lett., vol. 20, no. 5, pp. 200 -202, 1999. [3.1.14] Q. Z. Hong, W. T. Shiau, H. Yang, J. A. Kittl, C. P. Chao, H. L. Tsai, S. Krishnan, I. C. Chen, and R. H. Havemann, “CoSi2 with low leakage and low sheet resistance at 0.065mm gate length,” in IEDM Tech. Dig., 1997, pp. 107-110. [3.1.15] J. S. Park, D. K. Sohn, J. U. Bae, C. H. Han, J. W. Park, "The effect of Co incorporation on electrical characteristics of n +/p shallow junction formed by dopant implantation into CoSi2 and anneal," IEEE Trans. Electron Devices, vol. 47, no. 5, pp. 994-998, 2000. [3.1.16] C. Y. Lin, W. J. Chen, C. H. Lai, A. Chin, and J. Liu, “Formation of Ni germano-silicide on single crystalline Si0.3Ge0.7/Si,” IEEE Electron Device Lett. vol. 23, no. 8, pp. 464-466, 2002. [3.1.17] Y. H. Lin, Y. C. Chen, K. T. Chan, F. M. Pan, I. J. Hsieh, and A. Chin, “The strong degradation on 30 Å oxide integrity contaminated by copper,” J. Electrochem. Soc., vol. 148, no. 4, F73-F76 (2001). [3.1.18] Y. H. Lin, F. M. Pan, Y. C. Liao, Y. C. Chen, I. J. Hsieh, and A. Chin, “The Cu contamination effect in oxynitride gate dielectrics,” J. Electrochem. Soc., vol. 148, no. 4, G627 -G629 (2001). [3.1.19] B. C. Lin, Y. C. Cheng, A. Chin, T. Wang, and C. Tsai, “The Deuterium Effect on SILC,” in 30th Solid State Devices and Materials (SSDM), 1998, pp. 110-111. [3.2.1] Y. H. Wu and A. Chin, “High temperature formed SiGe p-MOSFETs with good device characteristics,” IEEE Electron Device Lett. vol. 21, no. 7, pp. 350-352, 2000. [3.2.2] Y. H. Wu, A. Chin, and W. J. Chen, “Thickness dependent gate oxide quality of thin thermal oxide grown on high temperature formed SiGe,” IEEE Electron Device Lett., vol. 21, no. 6, pp. 289-292, 2000. [3.2.3] Y. H. Wu, and A. Chin, “ Gate oxide integrity of thermal oxide grown on high temperature formed Si0.3Ge0.7,” IEEE Electron Device Lett., vol. 21, no. 3, pp.113-115. 2000. [3.2.4] S. J. Lee, H. F. Luan, C. H. Lee, T. S. Jeon, W. P. Bai, Y. Senzaki, D. Roberts, D. L. Kwong, “Performance and reliability of ultra thin CVD HfO2 gate dielectrics with dual poly-Si gate electrodes,” in Symp. on VLSI Technology, 2001, pp. 133-134. [3.2.5] X. Guo, X. Wang, Z. Luo, T. P. Ma, T. Tamagawa, “High quality ultra-thin (1.5 nm) TiO2-Si3N4 gate dielectric for deep sub-micron CMOS technology,” in IEDM Tech. Dig., 1999, pp. 137-140. [3.2.6] A. Chin, C. C. Liao, C. H. Lu, W. J. Chen, and C. Tsai, “Device and reliability of high-k Al2O3 gate dielectric with good mobility and low Dit,” in Symp. on VLSI Tech., 1999, pp. 135-136. [3.2.7] A. Chin, Y. H. Wu, S. B. Chen, C. C. Liao, and W. J. Chen, “High quality La2O3 and Al2O3 gate dielectrics with equivalent oxide thickness 5-10Å,” in Symp. on VLSI Tech., 2000, pp. 16-17. [3.2.8] J. H. Ku, C. J. Choi, S. Song, S. Choi, H. Fujuhara, H. K. Kang, and S. I. Lee, “High performance pMOSFETs with Ni(SixGei-x)/Poly-Si0.8Ge0.2 gate,” in Dig. Symp. VLSI Tech., 2000, pp. 114-115. [3.2.9] C. P. Chao, K. E. Violette, S. Unnikrishnan, M. Nandakumar, R. L. Wise, J. A. Kittl, Q.Z. Hong, and I.C Chen,” Low resistance Ti or Co salicided raised source/drain transistors for sub 0.13mm CMOS technology,” in IEDM Tech. Dig., 1997, pp. 103-106. [3.2.10] Q. Z. Hong, W. T. Shiau, H. Yang, J. A. Kittl, C. P. Chao, H. L. Tsai, S. Krishnan, I. C. Chen, and R. H. Havemann, “CoSi2 with low diode leakage and low sheet resistance at 0.065mm gate length,” in IEDM Tech. Dig., 1997, pp. 107-110. [3.2.11] Q. Xiang, C. Woo, E. Paton, J. Foster, B. Yu and M. R. Lin,” Deep sub-100nm CMOS with ultra low gate sheet resistance by NiSi,” in Dig. Symp. VLSI Tech., 2000, pp. 76-77. [3.2.12] Y. H. Wu, W. J. Chen, S. L. Chang, A. Chin, S. Gwo, and C. Tsai, ”Improved electrical characteristics of CoSi2 using HF-vapor pretreatment,” IEEE Electron Devices Lett., vol. 20, no. 7, pp. 320-322, 1999. [3.2.13] Y. Taur and T. K. Ning, Fundamentals of modern VLSI devices, pp. 196, Cambridge University Press, 1998. [4.1.1] A. Verma, A. Chatterjee, B. Bhuva, E. D. Jansen, “All Si-based optical interconnect for signal transmission,” Proc. of International Interconnect Technology Conf., pp. 69-72, 2001. [4.1.2] R. Versari, A. Pieracci, M. Manfredi, G. Soncini, P. Bellutti, and B. Ricco, “Light emission from MOS tunnel diodes”, IEDM Tech. Dig., p.745-748, 1999. [4.1.3] C. W. Liu, M. H. Lee, C. F. Lin, I. C. Lin, W. T. Liu, and H. H. Lin, “Light emission and detection by metal oxide silicon tunneling diodes”, IEDM Tech. Dig., p.749-752, 1999. [4.1.4] A. Chin, C. C. Liao, C. H. Lu, W. J. Chen, and C. Tsai, “Device and Reliability of High-k Al2O3 Gate Dielectric with Good Mobility and Low Dit,” in Symp. on VLSI Technology, pp. 133-134, 1999. [4.1.5] A. Chin, M. Y. Yang, C. L. Sun, and S. Y. Chen, “Stack gate PZT/Al2O3 one transistor ferroelectric memory,” IEEE Electron Device Lett. 22, 336-238 (2001). [4.1.6] Y. Taur and T. K. Ning, Fundamental Modern VLSI Devices, p.195. [4.1.7] Kevin Yang, Y. C. King, and C. Hu, “Quantum effect in oxide thickness determination from capacitance measurement”, in Symp. on VLSI Technology, p.77-78, 1999. [4.1.8] G.G. Qin, C.L Heng, G.F Bai, K. Wu, C.Y. Li, Z.C. Ma, W.H. Zong and Li-Ping You, Appl. Phys. Lett., 75, 1999, pp.3629-3631. [4.2.1] International technology roadmap for semiconductors, 2001 Edition, Interconnect Chapter, pp. 22. [4.2.2] P. P. Gelsinger, Intel development forum, Feb. 28, 2002. [4.2.3] R. Versari, A. Pieracci, M. Manfredi, G. Soncini, P. Bellutti, and B. Ricci, “Light emission from MOS tunnel diodes, in IEDM Tech. Dig., 2000, pp. 745-748. [4.2.4] C. W. Liu, M. H. Lee, C. F. Lin, I. C. Lin, W. T. Liu, and H. H. Lin, “Light emission and detection by metal oxide silicon tunneling diodes,” in IEDM Tech. Dig., 1999, pp. 749-752. [4.2.5] A. Chin, C. S. Liang, C. Y. Lin, C. C. Wu, and J. Liu, “Strong and efficient light emission in ITO/Al2O3 suprelattice tunnel diode”, in IEDM Tech. Dig., 2001, pp. 171-174. [4.2.6] A. Chin, C. C. Liao, C. H. Lu, W. J. Chen, and C. Tsai, “Device and reliability of high-k Al2O3 gate dielectric with good mobility and low Dit,” in Symp. on VLSI Tech., 1999, pp. 133-134. [4.2.7] M. Y. Yang, S. B. Chen, A. Chin, C. L. Sun, B. C. Lan, and S. Y. Chen, “One-transistor stacked gate memory,” in IEDM Tech. Dig., 2001, pp. 795-798. [4.2.8] Y. H. Wu, W. J. Chen, A. Chin, and C. Tsai, “The effect of native oxide on epitaxial SiGe from deposited amorphous Ge on Si,” Appl. Phys. Lett., vol. 74, no. 4, pp. 528-530, 1999. [4.2.9] Y. H. Wu and A. Chin, “High temperature formed SiGe p-MOSFETs with good device characteristics,” IEEE Electron Device Lett., vol. 21, no. 7, pp. 350-352, 2000. [4.2.10] Y. H. Wu and A. Chin, “Gate oxide integrity of thermal oxide grown on high temperature formed Si0.3Ge0.7,” IEEE Electron Device Lett., vol. 21, no. 3, pp. 113-115, 2000. [4.2.11] Y. H. Wu, A. Chin, and W. J. Chen, “Thickness dependent gate oxide quality of thin thermal oxide grown on high temperature formed SiGe,” IEEE Electron Device Lett., vol. 21, no. 6, pp. 289-291, 2000. [4.2.12] C. Y. Lin, W. J. Chen, C. H. Lai, A. Chin, and J. Liu, “Formation of Ni germano-silicide on single crystalline Si0.3Ge0.7/Si,” IEEE Electron Device Lett. vol. 23, no. 8, pp. 464-466, 2002. [4.2.13] D. K. Nayak, K. Goto, A. Yutani, J. Murota, Y. Shiraki, “High-mobility strained-Si PMOSFET''s,” IEEE Trans. Electron Devices, vol. 43, no. 10, pp. 1709-1716, 1996. [4.2.14] D. J. Robbins, P. Calcott, and W. Y. Leong, "Electroluminescence from a pseudomorphic Si0.8Ge0.2 alloy,” Appl. Phys. Lett., vol. 59, no. 11, pp. 1350-1352, 1991. [4.2.15] I. A. Buyanova, W. M. Chen, G. Pozina, B. Monemar, W. X. Ni and G. V. Hansson, “Mechanism for thermal quenching of luminescence in SiGe/Si structures grown by molecular beam epitaxy: Role of nonradiative defects,” Appl. Phys. Lett., vol. 71, no. 25, pp. 3676-3678, 1997. [4.2.16] T. Stoica, L. Vescan, and M. Goryll, “Electroluminescence of strained SiGe/Si selectively grown above the critical thickness for plastic relaxation,” J. Appl. Phys. vol. 83, no. 6, pp.3367-3373, 1998. [4.2.17] H. G. Grimmeiss, J. Olajos, J. Engvall, “SiGe: a promise into reality?” in Semiconductor Conference, 1995, pp. 17-26. [4.2.18] A. Wakahara, Y. Nomura, M. Ishii, K. Kuramoto, and A. Sasaki, “Strain effects on photoluminescence properties of Ge/Si disordered superlattices,” J. Appl. Phys. vol. 81, no. 12, pp. 7961-7965, 1997. [4.2.19] Y. T. Hou and M. F. Li, “Hole quantization effects and threshold voltage shift in pMOSFET,” IEEE Trans. Electron Devices, vol. 48, no. 6, pp. 1188-1193, 2001. [4.2.20] A. Chin, T. M. Cheng, S. P. Peng, Z. Osman, U. Das, and C. Y. Chang, “Strong luminescence intensities in Al0.22Ga0.78As grown on misoriented (111)B GaAs,” Appl. Phys. Lett., vol. 63, no. 17, pp. 2381-2383, 1993. [4.2.21] A. Chin, P. Martin, J. Ballingall, T.-H. Yu, and J. Mazurowski, “Comparison of high quality (111)B and (100) AlGaAs grown by molecular beam epitaxy,” Appl. Phys. Lett., vol. 59, no. 19, pp. 2394-2396, 1991. [4.2.22] A. Chin, P. Martin, J. Ballingall, T. Yu, and J. Mazurowski, “High quality materials and heterostructures on (111)B GaAs,” 11th Molecular Beam Epitaxy workshop, Austin, Texas, September 1991.
|