跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/09 20:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高宏鑫
研究生(外文):Hong-Sing Kao
論文名稱:互補式金氧半射頻發射器前置積體電路設計與分析
論文名稱(外文):THE DESIGN AND ANALYSIS OF CMOS RF TRANSMITTER FRONT-END INTEGRATED CIRCUITS
指導教授:吳重雨
指導教授(外文):Chung-Yu Wu
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:196
中文關鍵詞:發射器電壓控制震盪器正交調變器射頻放大器
外文關鍵詞:transmittervoltage-controlled oscillatorquadrature modulatorRF amplifier
相關次數:
  • 被引用被引用:0
  • 點閱點閱:299
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文的主旨在於闡述射頻發射器前置電路的設計方法及製作技術。論文中包含下列三個主要部分﹕(一)一個互補式金氧半、10億赫茲頻帶範圍、使用定電流及電流重複使用技術的電壓控制振盪器,此電壓控制振盪器具有高精準度正交相位輸出和低功率消耗的特性﹔(二)一個互補式金氧半、2伏特、和低功率消耗的直接轉換正交調變器,此調變器整合了正交相位輸出的電壓控制振盪器和射頻放大器,主要應用於10億赫茲頻帶範圍的射頻發射器﹔(三)一個互補式金氧半、低功率消耗、和直接轉換的發射器,此發射器整合了電壓控制振盪器、正交調變器及功率放大器。
首先,本論文設計了一個新的且具有同相和正交相位輸出之互補式金氧半電壓控制振盪器,此電路特色是由一個具有電感電容並聯負載的差動定電流環型振盪電路所架構出來,整個電路完全整合在標準的0.5微米雙層多晶矽雙層金屬之互補式金氧半製程上。在所實現的正交相位輸出之電壓控制振盪器上,當控制電壓從1.5伏特變化至3伏特,輸出振盪頻率可由16.5億赫茲變化至17.73億赫茲共1.23億赫茲的頻率調整範圍。當中心振盪頻率設定為17.28億赫茲,其單邊頻譜相位雜訊在10萬赫茲和100萬赫茲的位移頻率分別為-94分貝載波功率譜密度(dBc/Hz) 和-110分貝載波功率譜密度。由於二級環型振盪器之架構的引用,正交相位輸出之電壓控制振盪器的有效相位誤差小於1.55度。電流重複使用技術的應用,使此電路在3伏特電源供應電壓下,只消耗掉11.6毫安培的工作電流。整個正交相位輸出之電壓控制振盪器晶片,只耗掉260微米乘620微米的晶片面積,其中二個方的螺旋形電感佔掉大部份面積。
其次,本論文中提出了一個互補式金氧半、2伏特、和低功率消耗的直接轉換正交調變器,此調變器整合了正交相位輸出的電壓控制振盪器和射頻放大器,主要應用於10億赫茲頻帶範圍射頻發射器。當同相(I)通道及正交(Q)通道的基頻訊號和具有正交相位的本地振盪分別被加入到一組混合器,正交調變功能即可被實現。由於電流重複使用的技術被使用在正交調變器、具有正交相位輸出的電壓控制振盪器和射頻放大器,因此此晶片具有極低的功率消耗。因為此正交調變器在正電源供應電壓和地之間只串接二個電晶體和一個電阻,所以電源供應電壓可以低至1.5伏特。此正交調變器最主要是設計給19億赫茲歐規數位無線電話發射器應用。整個實驗晶片完全整合在標準的0.35微米N井(N-well) 雙層多晶矽三層金屬之互補式金氧半製程上。此發射器晶片在2伏特工作電壓下,只消耗18毫瓦特的功率。晶片上的電壓控制振盪器在不用任何相位調整及微調,即可提供高精確的正交相位輸出。此電壓控制振盪器在2伏特電源供應電壓下的頻率調整範圍從18.8億赫茲到20.16億赫茲共2.8億赫茲。由於二正交相位的路徑相當匹配,上緣頻帶的主訊號在20億赫茲及2伏特電源供應電壓下,影像拒斥比小於-40.4分貝(dB),本地振盪漏損量為-47.5分貝載波(dBc),二階及三階的失真皆小於-47.6分貝載波。當電源供應電壓為3伏特,影像拒斥比會比-51分貝小。
最後,本論文介紹了一個互補式金氧半、低功率消耗、和直接轉換的發射器,其中整合了電壓控制振盪器、正交調變器及功率放大器。此發射器晶片在2.5伏特工作電壓下,只消耗45毫安培的電流。由於電流重複使用技術被使用在正交調變器和具有正交相位輸出的電壓控制振盪器,因此此晶片具有極低的功率消耗。此電壓控制振盪器在0伏特至2.5伏特的控制電壓下,頻率調整範圍從26億赫茲到29.8億赫茲共3.8億赫茲。實驗晶片完全整合在標準的0.25微米單層多晶矽五層金屬及低阻值基體之互補式金氧半的製程上。由於使用高線性正交調變器及低相位誤差的正交相位輸出之電壓控制振盪器,量測到的本地振盪漏損量、影像拒斥比、二階及三階的失真分別為-48分貝載波、53.6分貝、-49.5分貝載波和-43.4分貝載波。針對短距離無線通訊應用,此晶片亦整合了三級的功率放大器,此功率放大器在9.75分貝毫瓦的輸出功率下,具有百分之十五點一的汲極效率。
經過模擬和實驗證實,本論文中所研發的電路將可應用於一個高整合度、全互補式金氧半製程的無線通訊統之中。如此將可以實現一個低價格、小體積的行動通訊裝備。在未來將針對其他的射頻元件做進一步整合,而成為一個完整的收發器。
In this thesis, the design methodology and implementation techniques of CMOS RF transmitter front-end circuits are presented. There are three parts in this research, including: (1) a low-power high-phase-accuracy gigahertz-range CMOS quadrature voltage-controlled oscillator (VCO) with constant-current operation and current-reusable structure; (2) a 2 V low-power CMOS direct-conversion quadrature modulator with integrated quadrature voltage-controlled oscillator and RF amplifier for gigahertz RF transmitter applications; (3) the design and analysis of a CMOS low-power direct-conversion transmitter with integrated VCO and power amplifier.
At first, a new CMOS VCO with both in-phase (I) and quadrature-phase (Q) outputs was designed featuring a constant-current ring oscillator with LC-tank loads. This proposed quadrature VCO is fully integrated in a standard 0.5 mm double-poly-double-metal (DPDM) CMOS technology. The output oscillation frequency was varied from 1.65 to 1.773 GHz having a tuning range of 123 MHz when the controlled voltage changes between 1.5 and 3 V. As the center oscillation frequency is adjusted at 1.728 GHz, phase noises of -94 dBc/Hz and -110 dBc/Hz were obtained for single sideband with offset being set at 100 kHz and 1 MHz from the carrier’s frequency respectively. Due to the application of two-stage ring oscillator, phase error of fabricated quadrature VCO is less than 1.55°. The operation current of 11.6 mA was consumed under a 3 V power supply because of the implementation of current-reused method. This prototype quadrature VCO chip consumes area of 260 mm ´ 620 mm only, with most of it being occupied by two integrated rectangular spiral inductors.
Secondly, a compact low-voltage low-power CMOS direct-conversion quadrature modulator with integrated quadrature VCO and RF amplifier for wireless transmitter applications is proposed and analyzed. By applying both baseband input signals with quadrature phases and quadrature LO signals to a set of combiners, the quadrature modulation functions can be implemented. The low-power operation is enabled by the current reuse technique used among quadrature modulator, quadrature VCO, and RF amplifier. Because only two transistors and one resistor are cascoded in the critical path of the proposed quadrature modulator between power supply and ground, the supply voltage can be as low as 1.5 V. The proposed circuit structure is used to design a quadrature modulator chip for 1.9 GHz DECT transmitter applications. The experimental chip is fabricated by using 0.35 μm N-well double-poly-triple-metal (DPTM) CMOS technology. The power dissipation is only 18 mW under 2 V power supply voltage. The on-chip quadrature VCO can provide highly accurate quadrature signals without any phase tuning or trimming. The frequency tuning range of the quadrature VCO is 280 MHz from 1.88 to 2.16 GHz at 2 V supply voltage. Due to small mismatch among quadrature signal paths, the measured image ratio is below -40.4 dBc under 2 V supply voltage when the desired upper sideband is set at 2 GHz and -51 dBc under 3 V supply voltage when the desired upper sideband at 1.94 GHz. At 2 V supply voltage, the measured LO leakage is -47.5 dBc. Moreover, the measured second-order distortion and third-order distortion are less than -47.6 dBc.
Finally, a CMOS low-power direct-conversion transmitter with integrated VCO and power amplifier is presented in this thesis. The experimental chip of the proposed transmitter is designed and fabricated in 0.25 μm single-poly-five-metal (1P5M) CMOS process with low-resistivity substrate. The transmitter chip drains only 45 mA from a 2.5 V power supply voltage. The low-power feature of transmitter chip is furnished by the current reuse technique used among quadrature modulator and quadrature VCO. The 380 MHz tuning range of the realized quadrature VCO can be varied from 2.6 to 2.98 GHz while controlled voltage changes between 0 and 2.5 V. With highly linear quadrature modulator and low phase error quadrature VCO structure, the measured LO leakage, image rejection, second-order distortion and third-order distortion of the modulated signal at the output of transmitter achieve -48 dBc, 53.6 dB, -49.5 dBc, and -43.4 dBc, respectively. The three-stage power amplifier is also integrated to provide 9.75 dBm output power with 15.1% overall efficiency for short-range wireless communications.
It is believed that the proposed high performance RF transmitter front-end circuits can be applied to an all-CMOS wireless communication system. Thus a low-cost small-size mobile equipment can be implemented. Further research on the integration of other transceiver components will be conducted in the future.
ABSTRACT (CHINESE) i
ABSTRACT (ENGLISH) iv
ACKNOWLEDGEMENT vii
CONTENTS ix
TABLE CAPTIONS xii
FIGURE CAPTIONS xiv
CHAPTER 1 INTRODUCTION 1
1.1 BACKGROUND 1
1.2 REVIEW ON TRASNMITTER ARCHITECTURES AND BULIDING BLOCKS 2
1.2.1 Transmitter Architectures 2
1.2.1.A Superheterodyne Transmitter 2
1.2.1.B Direct-Conversion Transmitter 3
1.2.2 Building Blocks 4
1.2.2.A Quadrature VCO 4
1.2.2.B Quadrature Modulator 6
1.2.2.C Power Amplifier 6
1.3 ORGANIZATION OF THIS THESIS 7
CHAPTER 2 A CMOS QUADRATURE VCO WITH CONSTANT-CURRENT OPERATION AND CURRENT-REUSABLE STRUCTURE 14
2.1 INTRODUCTION 14
2.2 OPERATIONAL PRINCIPLE 15
2.3 CIRCUIT DESIGNS 18
2.3.1 The Circuit Design of 1.7-GHz Quadrature VCO 19
2.3.2 The Simulation Results of 5.3-GHz Quadrature VCO 21
2.3.3 Layout Consideration 22
2.4 EXPERIMENTAL RESULTS 24
2.5 SUMMARY 29
CHAPTER 3 A CMOS DIRECT-CONVERSION QUADRATURE MODULATOR WITH INTEGRATED QUADRATURE VCO AND RF AMPLIFIER FOR DECT 55
3.1 INTRODUCTION 55
3.2 OPERATIONAL PRINCIPLE 57
3.3 CIRCUIT DESIGNS 61
3.3.1 Quadrature Modulator 61
3.3.2 Merged Quadrature VCO 66
3.3.3 Merged RF Amplifier 67
3.3.4 Overall Circuit 69
3.4 EXPERIMENTAL RESULTS 70
3.5 SUMMARY 74
CHAPTER 4 A COMPACT CMOS DIRECT-CONVERSION TRANSMITTER FOR BLUETOOTH 101
4.1 INTRODUCTION 101
4.2 OPERATIONAL PRINCIPLE 103
4.3 CIRCUIT DESIGNS 105
4.3.1 Quadrature Modulator 105
4.3.2 Quadrature VCO 108
4.3.3 Power Amplifier 110
4.4 EXPERIMENTAL RESULTS 111
4.5 SUMMARY 117
CHAPTER 5 CONCLUSIONS AND FUTURE WORKS 156
5.1 MAIN RESULTS OF THIS THESIS 156
5.2 FUTURE WORKS 158
REFERENCES 161
VITA 176
PUBLICATION LIST 177
[1] B. Rasavi, “CMOS technology characterization for analog and RF design,” IEEE J. Solid-State Circuits, vol. 34, no. 3, pp. 268-276, Mar. 1999.
[2] M. Steyaert, “Single chip CMOS RF transceivers: wishful thinking or reality,” in IEE Seminar on Low Power IC Design, 2001, pp. 1/1-1/6.
[3] A. A. Abidi, “Wireless transceivers in CMOS IC technology — the new wave,” in Proc. VLSI Technology, Systems, and Applications Symp., Jun. 1999, pp. 151-158.
[4] B. Rasavi, “RF IC design challenges,” in Proc. Design Automation Conf., Jun. 1998, pp. 408-413.
[5] A. A. Abidi, “Direct-conversion radio receivers for digital communications,” IEEE J. Solid-State Circuits, vol. 30, pp. 1399-1410, Dec. 1995.
[6] B. Rasavi, RF Microelectronics, Prentice-Hall, first ed., 1998.
[7] A. A. Abidi, A. Rofougaran, G. Chang, J. Rael, J. Chang, M. Rofougaran, P. Chang, and S. Khorram, “A monolithic 900-MHz spread-spectrum wireless transceiver in 1-um CMOS,” in Analog Circuit Design, W. M. C. Sansen, J. H. Huijsing, and R. J. van de Plassche, Eds., ISBN 0-7923-9776-2, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.
[8] A. A. Abidi, “Radio-frequency integrated circuits for portable communications,” in Proc. IEEE Custom Integrated Circuits Conf., May 1994, pp. 151-158.
[9] H. Darabi, S. Khorram, E. Chien, M. Pan, S. Wu, S. Moloudi, J. C. Leete, J. J. Rael, M. Syed, R. Lee, P. Kilcoyne, B. Ibrahim, M. Rofougaran, and A. Rofougaran, “A fully integrated transceiver for Bluetooth,” in Proc. GaAs IC Symp., Oct. 2001, pp. 11-14.
[10] H. Darabi, S. Khorram, H.-M. (E.) Chien, M. Pan, S. Wu, S. Moloudi, J. C. Leete, J. J. Rael, M. Syed, R. Lee, P. Kilcoyne, B. Ibrahim, M. Rofougaran, and A. Rofougaran, “A 2.4-GHz CMOS transceiver for Bluetooth,” IEEE J. of Solid-State Circuits, vol. 36, pp. 2016-2024, Dec. 2001.
[11] E. Hegazi and A. A. Abidi, “A 17mW transmitter and frequency synthesizer for 900MHz GSM fully integrated in 0.35-um CMOS,” in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2002, pp. 234-237.
[12] B. Rasavi, “RF transmitter architectures and circuits,” in Proc. Custom Integrated Circuits Conf., May 1999, pp. 197-204.
[13] T. D. Stetzler, I. G. Post, J. H. Havens, and M. Koyama, “A 2.7V-4.5V single chip GSM transceiver RF integrated circuit,” IEEE J. of Solid-State Circuits, vol. 30, pp. 1421-1429, Dec. 1995.
[14] T. Yamawaki, M. Kokubo, K. Irie, H. Matsui, K. Hori, T. Endou, H. Hagisawa, T. Furuya, Y. Shimizu, M. Katagishi, and J. R. Hildersley, “A 2.7V GSM RF transceiver IC,” IEEE Journal of Solid-State Circuits, vol. 32, pp. 2089-2096, Dec. 1997.
[15] G. Irvine, S. Herzinger, R. Schmidt, D. Kubetzko, and J. Fenk, “An upconversion loop transmitter IC for digital mobile telephones,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1998, pp. 364-365.
[16] C. Marshall, F. Behbahani, W. Birth, A. Fotowat, T. Fuchs, R. Gaethke, E. Heimerl, S. Lee, P. Moore, S. Navid, and E. Saur, “ 2.7V GSM transceiver ICs with on-chip filtering,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1995, pp. 148-149.
[17] A. Zolfaghari, A. Chan, and B. Rasavi, “A 2.4GHz 34mW CMOS transceiver for frequency-hopping and direct-sequence applications,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2001, pp. 418-419.
[18] F. O. Eynde, J.-J. Schmit, V. Charlier, R. Alexandre, C. Sturman, K. Coffin, B. Mollekens, J. Craninckx, S. Terijn, A. Monterastelli, S. Beerens, P. Goetschalckx, M. Ingels, D. Joos, S. Guncer, and A. Pontioglu, “A fully-integrated single-chip SOC for Bluetooth,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2001, pp. 197-197.
[19] B. Razavi, “Design considerations for direct-conversion receivers,” IEEE Trans. Circuits and Systems, Part II, vol. 44, pp. 428-435, Jun. 1997.
[20] E. Daoud, W. Mikhael, M. Swamy, “New active RC-networks for the generation and detection of single-sideband signals,” IEEE Trans. Circuits and Systems, vol. 27, pp. 1140-1154, Dec. 1980.
[21] A. Hairapetian, “An 81 MHz IF receiver in CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1996, pp. 56-57.
[22] S. Jantzi, K. Martin, and A. Sedra, “A quadrature bandpass sigma-delta modulator for digital radio,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1997, pp. 126-127.
[23] A. A. Abidi, A. Rofougaran, G. Chang, J.Rael, J. Chang, M. Rofougaran, and P. Chang, “The future of CMOS wireless transceiver,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1997, pp. 118-119.
[24] A. R. Shahani, D. K. Shaeffer, and T. H. Lee, “A 12mW wide dynamic range CMOS front end for portable GPS receivers,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1997, pp. 368-369.
[25] J. C. Rudell, J.-J Ou, T. B. Cho, G. Chien, F. Brianti, J. A. Weldon, and P. R. Gray, “ A 1.9GHz wideband IF double conversion CMOS integrated receiver for cordless telephone applications,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1997, pp. 118-119.
[26] B. Razavi, “A 900-MHz CMOS direct-conversion receiver,” in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 1997, pp. 113-114.
[27] S. Wu and B. Razavi, “A 900-MHz/1.8-GHz CMOS receiver for dual-band applications,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1998, pp. 124-125.
[28] J. Craninckx and M. Steyaert, Wireless CMOS Frequency Synthesizer Design, Kluwer Academic Publishers, first ed., 1998.
[29] B. Razavi, “Challenges in the design of frequency synthesizers for wireless applications,” in Proc. IEEE Custom Integrated Circuits Conf., May 1997, pp. 395-402.
[30] B. G. Goldberg, “ Reviewing various techniques for synthesizing signals,” Microwaves & RF, pp. 181-185, May 1996.
[31] W. L. Rhode, Digital PLL Frequency Synthesizers, Theory and Design, Englewood Cliffs, NJ: Prentice-Hall, 1983.
[32] J. A. Crawford, Frequency Synthesizer Design Handbook, Artech House, 1994.
[33] W. F. Egan, Frequency Synthesizer by Phase Lock, New York, Wiley & Sons, 1981.
[34] R. Mohindra, “Isolator for DECT open-loop modulator,” RF Design, pp. 30-42, Jan. 1996.
[35] E. Hegazi, and A. A. Abidi, ” A 17-mW transmitter and frequency synthesizer for 900-MHz GSM fully integrated in 0.35um CMOS,” IEEE J. of Solid-State Circuits, vol. 38, pp. 782-792, May 2003.
[36] V. Manassewitch, Frequency Synthesizer Theory and Design, New York: Wiley & Sons, 1976.
[37] T. Aytur and B. Rasavi, “A 2-GHz 6-mW BiCMOS frequency synthesizer,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1995, pp. 264-265.
[38] T. A. D. Riley, M. A. Copeland, and T. A. Kwasniewskiy, “Sigma-delta modulation in fractional-N frequency synthesizer,” IEEE J. Solid-State Circuits, vol. 28, pp. 553-559, May 1993.
[39] A. A. Abidi, “Noise in active resonators and the available dynamic range,” IEEE Trans. on Circuits and Systems — I: Fundamental Theory and Applications, vol. 39, no. 4, pp. 296-299, April 1992.
[40] A. Ali and L. Tham, “A 900-MHz frequency synthesizer with integrated LC voltage-controlled oscillator,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1996, pp. 390-391.
[41] W. F. Egan, Frequency Synthesis by Plase Lock, ISBN 0-89464-456-4. J. Wiley & Sons, New York, USA, 1981.
[42] B. De Muer and M. S. J. Steyaert, “A CMOS monolithic ΔΣ-controlled fractional-N frequency synthesizer for DCS-1800,” IEEE J. Solid-State Circuits, vol. 37, no. 7, pp. 835-844, July 2002.
[43] H. Meyr and G. Ascheid, Synchronization in Digital Communications: Phase-, Frequency Locked Loops, and Amplitude Control, ISBN 0-471-50193-X. J. Wiley & Sons, New York, USA, 1990.
[44] D. Mijuskovic, M. J. Bayer, T. F. Chomicz, N. K. Garg, F. James, P. W. McEntarfer, and J. A. Porter, “Cell based fully integrated CMOS frequency synthesizers,” IEEE J. Solid-State Circuits, vol. 29, no. 3, pp. 271-279, March 1994.
[45] J. Thomson, B. Baas, E. M. Cooper, J. M. Gilbert, G. Hsieh, P. Husted, A. Lokanathan, J. S. Kuskin, D. McCracken, B. McFarland, T. H. Meng, D. Nakahira, S. Ng, M. Rattehalli, J. L. Smith, R. Subramanian, L. Thon, Y.-H. Wang, R. Yu, and X. Zhang, “An integrated 802.11a baseband and MAC processor,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2002, pp. 126-127.
[46] S. Mirabbasi, and K. Martin, “IIR digital filter for delta-sigma decimation, channel selection, and square-root raise-cosine nyquist filter,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2002, pp. 130-131.
[47] A. Torosyan, D. Fu, A. N. Willson, Jr., “A 300MHz quadrature direct digital synthesizer/mixer in 0.25um CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2002, pp. 132-133.
[48] H.-C. Liu, J. S. Min, and H. Samueli, “A low-power baseband receiver IC for frequency hopped spread spectrum communications,” IEEE J. Solid-State Circuits, vol. 31, no. 3, pp. 384-394, Mar. 1996.
[49] J. H. Lee, H. J. Seo, and H. J. Song, “ An integrated CDMA intermediate-frequency transceiver for wireless local loop,” IEEE Transactions on Consumer Electronics, vol. 45, no. 2, pp. 269-274, May 1999.
[50] J. L. Tham, M. A. Margarit, B. Pregardier, C. D. Hull, R. Magoon, and F. Carr, “A 2.7-V 900-MHz/1.9-GHz dual-band transceiver IC for digital wireless communication,” IEEE J. Solid-State Circuits, vol. 34, no. 3, pp. 286-291, Mar. 1999.
[51] H. Sato, K. Kashiwagi, K. Niwano, T. Iga, T. Ikeda, K. Mashiko, T. Sumi, and K. Tsuchihashi, “A 1.9-GHz single chip IF transceiver for digital cordless phones,” IEEE J. Solid-State Circuits, vol. 31, no. 12, pp. 1974-1980, Dec. 1996.
[52] K. lrie, Matsui, T. Endo, K. Watanabe, T. Yamawaki, M. Kokubo, and J. Hildersley, “A 2.7V GSM RF transceiver IC,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1997, pp. 302-303.
[53] B. Rasavi, “A study of phase noise in CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 31, pp. 331-343, Mar. 1996.
[54] P. Basedau and Q. Huang, “A 1-GHz, 1.5-V monolithic LC oscillator in 1-um CMOS,” in Proc. IEEE European Solid-State Circuits Conf., Sept. 1994, pp. 172-175.
[55] J. Craninckx and M. Steyaert, “ A fully integrated spiral-LC CMOS VCO set with prescaler for GSM and DCS-1800 systems,” in Proc. IEEE Custom Integrated Circuits Conf., May 1997, pp. 403-406.
[56] J. Parker and D. Ray, “A low-noise 1.6-GHz CMOS PLL with on-chip loop filter,” in Proc. IEEE Custom Integrated Circuits Conf., May 1997, pp. 407-410.
[57] B. Razavi and J. Sung, “A 6-GHz 60-mW BiCMOS phase locked loop with 2-V supply,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1994, pp. 114-115.
[58] J. Craninckx and M. Steyaert, “A 1.8-GHz low-phase-noise voltage-controlled oscillator with prescaler, ” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1995, pp. 266-267.
[59] J. Craninckx and M. Steyaert, “A 1.8-GHz low-phase-noise CMOS VCO using optimized hollow inductors,” IEEE J. Solid-State Circuits, vol. 32, no. 4, pp. 736-744, May 1997.
[60] J. Craninckx and M. Steyaert, “A 1.8-GHz low-phase noise spiral-LC CMOS VCO,” in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 1996, pp. 30-31.
[61] M. Soyuer, K. A. Jenkins, J. N. Burghartz, H. A. Ainspan, F. J. Canora, S. Ponnapalli, J. F. Ewen, and W. E. Pence, “A 2.4-GHz silicon bipolar oscillator with integrated resonator,” IEEE J. Solid-State Circuits, vol. 31, no. 2, pp. 268-270, Feb. 1996.
[62] M. Soyuer, K. A. Jenkins, J. N. Burghartz, M. D. Hulvey, “A 3-V 4-GHz voltage-controlled oscillator with integrated resonator,” IEEE J. Solid-State Circuits, vol. 31, no. 12, pp. 2042-2045, Dec. 1996.
[63] J. Craninckx and M. Steyaert, “1.1-GHz oscillator using bondwire inductance,” IEE Electronic Letters, vol. 30, no. 3, pp. 244-245, 3rd Feb. 1994.
[64] R. Aparicio and A. Hajimiri, “A noise-shifting differential colpitts VCO,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1728-1736, Dec. 2002.
[65] A. A. Abidi, “Low-power radio-frequency ICs for portable communications,” Proc. IEEE, vol. 83, p.p. 544-569, Apr. 1995.
[66] J. Sevenhans, D. Haspeslagh, A. Delarbre, L. Kiss, Z. Chang, and J. F. Kukielka, “An analog radio front-end chip set for a 1.9GHz mobile radio telephone application,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1994, pp. 44-45.
[67] J. Sevenhans, A. Vanwelsenaers, J. Wenin, and J. Baro, “An integrated Si bipolar RF transceiver for a zero IF 900MHz GSM digital mobile radio front-end of a hand portable phone,” in Proc. IEEE Custom Integrated Circuits Conf., May 1991, pp. 7.7.1-7.7.4.
[68] I. A. Koullias, S. L.Forgues, and P. C. Davis, “A 100 MHz IF amplifier/quadrature demodulator for GSM cellular radio mobile terminals,” in IEEE Bipolar Circ. And Tech. Mtg., 1990, pp. 248-249.
[69] F. Behgahani, Y. Kishigami, J. Leete, A. A. Abidi, “CMOS mixers and polyphase filters for large image rejection,” IEEE J. Solid-State Circuits, vol. 36, pp. 873-887, Jun. 2001.
[70] T. Cho, E. Dukatz, M. Mack, D. MacNally, M. Marringa, S. Mehta, C. Nilson, L. Plouvier, and S. Rabii, “A single-chip MOS direct-conversion transceiver for 900MHz spread-spectrum digital cordless phones,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1999, pp. 228-229.
[71] J. Fenk, W. Birth, R. G. Irvine, P. Sehrig, and K. R. Schon, “An RF front-end for digital mobile radio,” in IEEE Bipolar Circ. And Tech. Mtg., 1990, pp. 244-247.
[72] W. S. T. Yan and H. C. Luong, “A 900MHz CMOS low-phase-noise voltage-controlled ring oscillator,” IEEE Trans. Circuits and Syst. II, vol. 48, pp.216-221, Feb. 2001.
[73] C. H. Park, O. Kim, and B. Kim, “A 1.8-GHz self-calibrated phase-locked loop with precise I/Q matching,” IEEE J. Solid-State Circuits, vol. 36, pp. 777-783, May 2001.
[74] J. McNeill and R. Croughwell “A 150mW, 155MHz phase-locked-loop with low jitter VCO,” in Proc. IEEE Int. Symp. on Circuits and Systems, Jun. 1994, vol. 3, pp. 49-52.
[75] A. W. Buchwald and K. W. Martin, "High-speed voltage-controlled oscillator with quadrature outputs," Electron. Lett., vol. 27, pp. 309-310, 1991.
[76] Y. Sugimoto, and T. Ueno, “The design of a 1-V, 1-GHz CMOS VCO circuit with in-phase and quadrature-phase outputs,” in Proc. IEEE Int. Symp. on Circuits and Systems, Jun. 1997, pp. 269-272.
[77] J. Tang, and D. Kasperkovitz, “A 0.9-2.2GHz monolithic quadrature mixer oscillator for direct-conversion satellite receivers,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1997, pp. 88-89.
[78] C.-Y. Wu, and C.-Y. Chou, “A 5-GHz CMOS double-quadrature receiver with single-stage quadrature generator and active polyphase filters,” submit to IEEE J. Solid-State Circuits.
[79] B. Razvai, "A 1.8GHz CMOS voltage-controlled oscillator," in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1997, pp. 388-389.
[80] A. Rofougaran, J. Rael, M. Rofougaran, and A. Abidi, "A 900MHz CMOS LC-oscillator with quadrature outputs," in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1996, pp. 392-393.
[81] C. Lam and B. Razvai, “A 2.6/5.2-GHz CMOS voltage-controlled oscillator,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1999, pp. 402-403.
[82] J. J. Kim and B. Kim, “A low-phase noise CMOS LC oscillator with a ring structure,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1999, pp. 402-403.
[83] A. M. ElSayed, and M. I. Elmasry, “Low-phase-noise LC quadrature VCO using coupled tank resonators in a ring structure,” IEEE J. Solid-State Circuits, vol. 36, pp. 701-705, April 2001.
[84] P. Andreani, A. Bonfanti, L. Romano, and C. Samori, “Analysis and design of a 1.8-GHz CMOS LC quadrature VCO,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1737-1747, Dec. 2002.
[85] M. Tiebout, “Low-power low-phase-noises differentially tuned quadrature VCO design in standard CMOS,” IEEE J. Solid-State Circuits, vol. 36, pp. 1018-1024, July 2001.
[86] H. Matsuoka and T. Tsukahara, “A 5-GHz frequency-doubling quadrature modulator with a ring-type local oscillator,” IEEE J. Solid-State Circuits, vol. 34, no. 9, pp. 1345-1348, Sept. 1999.
[87] T. Tsukahara, J. Yamada, “3 to 5GHz quadrature modulator and demodulator using a wideband frequency-doubling phase shifter,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2000, pp. 384-385.
[88] B. Sam and P. Halford, “High-performance quadrature modulator for broadband wireless communication,” in Proc. IEEE Radio Frequency Integrated Circuits Symp., Jun. 2001, pp. 17-20.
[89] P.-U. Su and J.-M. Hsu, “A quadrature modulator with enhanced harmonic rejection filter,” in Proc. IEEE Asia-Pacific ASIC Conf., 2002, pp. 319-322.
[90] T. Tsukara, M. Ishikawa, and M. Muraguchi, “A 2-V 2-GHz Si-bipolar direct-conversion quadrature modulator,” IEEE J. Solid-State Circuits, vol. 31, no. 2, pp. 263-267, Feb. 1996.
[91] M. Steyaert and R. Roovers, “A 1-GHz single-chip quadrature modulator,” IEEE J. Solid-State Circuits, vol. 27, no. 8, pp. 1194-1197, Aug. 1992.
[92] J. Itoh, M. Nishitsuji, O. Ishikawa, and D. Ueda, “2.1GHz direct-conversion GaAs quadrature modulator IC for W-CDMA base station,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1999, pp. 226-227.
[93] J. Itoh, T. Nakatsuka, K. Sato, Y. Imagawa, T. Uda, T. Yokoyama, M. Maeda, and O. Ishikawa, “A low distortion GaAs quadrature modulator IC,” in Proc. IEEE Radio Frequency Integrated Circuits Symp., Jun. 1998, pp. 55-58.
[94] K. Yamamoto, K. Maemura, N. Andoh, and Y. Mitsui, “A 1.9-GHz-band GaAs direct-quadrature modulator IC with a phase shifter,” IEEE J. Solid-State Circuits, vol. 28, no. 10, pp. 994-999, Oct. 1993.
[95] A. Bóveda, F. Ortigoso, and J. I. Alonso, “A 0.7-3 GHz GaAs QPSK/QAM direct modulator,” IEEE J. Solid-State Circuits, vol. 28, no. 12, pp. 1340-1349, Dec. 1993.
[96] A. Teetzel, “A stable 250 to 4000MHz GaAs IQ modulator IC,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1997, pp. 364-365.
[97] M. Steyaert, M. Borremans, J. Janssens, B. D. Muer, N. Itoh, J. Craninckx, J. Crols, E. Morifuji, H. S. Momose, and W. Sansen, “A single-chip CMOS transceiver for DCS-1800 wireless communications,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1998, pp. 48-49.
[98] P. Orsatti, F. Piazza, Q. Huang, and T. Morimoto, “A 20mA-receiver 55mA-transmitter GSM transceiver in 0.25um CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1999, pp. 232-233.
[99] B. Razavi, “A 900-MHz/1.8-GHz CMOS transmitter for dual-band applications,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 573-579, May 1999.
[100] J. A. Weldon, R. S. Narayanaswami, J. C. Rudell, L. Lin, M. Otsuka, S. Dedieu, L. Tee, K. C. Tsai, C. W. Lee, and P. R. Gray, “A 1.75-GHz high integrated narrow-band CMOS transmitter with harmonic-rejection mixers,” IEEE J. Solid-State Circuits, vol. 36, no. 12, pp. 2003-2015, Dec. 2001.
[101] U. Dasgupta, W. G. Yeoh, C. G. Tan, S. J. Wong, H. Mori, R. Singh, and M. Itoh, “A CMOS transmit/receive IF chip-set for WCDMA mobiles,” in Proc. IEEE Radio Frequency Integrated Circuits Symp., Jun. 2002, pp. 195-198.
[102] S. C. Cripps, RF Power Amplifiers for Wireless Communication, Artech House, first ed., 1999.
[103] J. Y.-C. Chang, A. A. Abidi, and M. Gaitan, “Large suspended inductors on silscon and their use in a 2-um CMOS RF amplifier,” IEEE Electron Device Letters, vol. 14, no. 4, pp. 246-248, May 1993.
[104] C. Fallsen and P. Asbeck, “A 1W 0.35um CMOS power amplifier for GSM-1800 with 45% PAE,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2001, pp. 158-159.
[105] S. Wong, H. Bhimnathwala, S. Luo, B. Halai, and S. Navid, “A 1W 830MHz momolithic BiCMOS power amplifier,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1996, pp. 52-53.
[106] M. Hella and M. Ismail, “A digital controlled RF CMOS power amplifier,” in Proc. of the Midwest CAS Conf., Aug. 2001, pp. 833-835.
[107] M. Rofougaran, A. Rofougaran, C. Olgaard, and A. A. Abidi, “A 900MHz CMOS RF power amplifier with programmable output power,” in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 1994, pp. 133-134.
[108] J. Min, A. Rofougaran, H. Samueli and A. Abidi, “An All-CMOS architecture for a low-power frequency-hopped 900-MHz spread spectrum transceiver,” in Proc. IEEE Custom Integrated Circuits Conf., May 1994, pp. 379-382.
[109] D. Su and W. McFarland, “A 2.5-V, 1-Watt monolithic CMOS RF power amplifier,” in Proc. IEEE Custom Integrated Circuits Conf., May 1997, pp. 179-182.
[110] K.-C. Tsai and P. R. Gray, “ A 1.9GHz 1-W CMOS class E power amplifier for wireless communications,” IEEE J. Solid-State Circuits, vol. 34, no. 7, pp. 962-970, Jul. 1999.
[111] K.-C. Tsai and P. R. Gray, “ A 1.9GHz 1-W CMOS class E power amplifier for wireless communications,” in Proc. IEEE European Solid-State Circuits Conf., Sept. 1998, pp. 76-79.
[112] C. Yoo and Q. Huang, “A common-gate switched, 0.9W class-E power amplifier with 41% PAE in 0.25um CMOS,” in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2000, pp. 56-57.
[113] P. Alinikula, K. Choi and S. Long, “Design of class E power amplifier with nonlinear parasitic output capacitance,” IEEE Transactions on Circuits and Systems II, vol. 46, pp. 114-118, Feb. 1999.
[114] N. O. Sokal and A. D. Sokal, “Class-E a new class of high-efficiency tuned single-ended switching power amplifiers,” IEEE J. Solid-State Circuits, vol. 10, pp. 168-176, June 1975.
[115] F. H. Raab, “Idealized operation of the class E tuned power amplifier,” IEEE Trans. Circuit Systems, vol. CAS-24, pp. 725-735, Dec. 1977.
[116] D. Choi and S. Long, “A physically based analytic model of FET class-E power amplifier — designing for maximum PAE,” IEEE Trans. on Microwave Theory and Techniques, vol. 47, pp. 1712-1719, Sept. 1999.
[117] T. Sowlati, C. A. T. Salama, J. Sitch, G. Rabjohn, and D. Smith, “ Low voltage high efficiency class E GaAs power amplifier for wireless communications,” IEEE J. Solid-State Circuits, vol. 30, pp. 1074-1080, Oct. 1995.
[118] I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, “Fully integrated CMOS power amplifier design using the distributed active-transformer architecture,” IEEE J. Solid-State Circuits, vol. 37, pp. 371-383, Mar. 2002.
[119] T. Kuo and B. Lusignan, “A 1.5W class-F RF power amplifier in 0.2um CMOS technology,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2001, pp. 154-155.
[120] A. Shirvani, D. Su, and B. Wooley, “A CMOS RF power amplifier with parallel amplification for efficient power control,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2001, pp. 156-157.
[121] F. H. Raab, “ An introduction to class F power amplifiers,” RF Design, pp. 79-84, May 1996.
[122] R. Gupta and D. Allstot, “Parasitic aware design and optimization of CMOS RF integrated circuits,” in Proc. IEEE Radio Frequency Integrated Circuits Symp., Jun. 1998, pp. 325-328.
[123] A. Ajjikuttira, C. Leung, E. S. Khoo, M. Choke, R. Singh, T. H. Teo, B. C. Cheong, J. H. See, H. S. Yap, P. B. Leong, C. T. Law, M. Itoh, A. Yoshida, Y. Yoshida, A. Tamura, and H. Nakamura, “A fully-integrated CMOS RFIC for Bluetooth applications,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2001, pp. 198-199.
[124] C.-Y. Wu and H.-S. Kao, “A 1.8GHz CMOS quadrature voltage-controlled oscillator (VCO) using the constant-current LC ring oscillator structure,” in Proc. IEEE Int. Symp. on Circuits and Systems, May 1998, vol. 4, pp. 378-381.
[125] Craninckx, J., M. Steyaert, “Low noise voltage-controlled oscillators using enhanced LC tanks,” IEEE Trans. Circuits and Syst. II, vol. 43, pp. 794-804, Dec. 1995.
[126] J. Craninckx and M. S. J. Steyaert, "A 1.8-GHz CMOS low-phase-noise voltage-controlled oscillator with prescaler," IEEE J. Solid-State Circuits, vol. 30, pp. 1474-1482, Dec. 1995.
[127] H.-S. Kao and C.-Y. Wu, “A compact CMOS 2V low-power direct-conversion quadrature modulator merged with quadrature voltage-controlled oscillator and RF amplifier for 1.9GHz transmitter applications,” in Proc. IEEE Int. Symp. on Circuits and Systems, vol. 4, pp. 765-768, May 2000.
[128] M. Borremans, M. Steyaert, and T. Yoshitomi, “A 1.5V, wide band 3GHz, CMOS quadrature direct up-converter for multi-mode wireless communications,” in Proc. IEEE Custom Integrated Circuits Conf., 1998, pp. 79-82.
[129] T. P. Liu, E. Westerwick, N. Rohani, and R. H. Yan, “5GHz CMOS radio transceiver front-end chipset,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2000, pp. 320-321.
[130] S. Sheng, L. Lynn, J. Peroulas, K. Stone, I. O’Donnell, and R. Brodersen, “A low-power CMOS chipset for spread-spectrum communications,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1996, pp. 346-347.
[131] C.-Y. Wu and H.-S. Kao, “A 3V 1.9GHz CMOS low-distortion direct-conversion quadrature modulator with an RF amplifier,” in Proc. Int. Conf. on Electrionics, Circuits, and System, Sept. 1999, vol. 2, pp. 777-780.
[132] P. V. Zeijl, J.-W. T. Eikenbroek, P.-P Vervoort, S. Setty, J. Tangenberg, G. Shipton, E. Kooistra, I. C. Keekstra, D. Belot, K. Visser, E. Bosma, and S. C. Blaakmeer, “A Bluetooth radio in 0.18-um CMOS,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1679-1687, Dec. 2002.
[133] S.-Y. Hsiao and C.-Y. Wu, “A parallel structure for CMOS four-quadrant analog multipliers and its application to 2GHz RF downconversion mixer,” IEEE J. Solid-State Circuits, vol. 33, no. 6, pp. 859-869, June 1998.
[134] European Telecommunication Standard of the DECT, Version ETS300 175-2 2nd edition, Sept. 1996.
[135] Specification of the Bluetooth System, Version 1.0B, Dec. 1999.
[136] IEEE Standard of the Wireless LAN, Version P802.11b/D7.0, Sept. 1999.
[137] C.-Y. Wu and S.-Y. Hsiao, “Analysis and modeling of square spiral inductors on silicon substrate,” in Proc. Int. Conf. on Electronics, Circuits, and System, Dec. 1995, pp. 528-531.
[138] B. Razavi, “A 900-MHz/1.8-GHz CMOS transmitter for dual-band applications,” in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 1998, pp. 128-131.
[139] D. Gerna, A. Giry, D. Manstretta, D. Belot, and D. Pache, “1W 900MHz direct conversion CMOS transmitter for paging applications,” in Proc. IEEE Int. Symp. On Radio Frequency Integrated Circuits, May 2001, pp. 191-194.
[140] C.-Y. Wu and H.-S. Kao, “A 2-V low-power CMOS direct-conversion quadrature modulator with integrated quadrature voltage-controlled oscillator and RF amplifier for GHz RF transmitter applications,” IEEE Transactions on Circuits and Systems II, vol. 49, pp. 123-134, Feb. 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top