(3.215.77.193) 您好!臺灣時間:2021/04/17 00:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:羅天佑
論文名稱:無線區域網路傳輸頻寬保證演算法
論文名稱(外文):An algorithm for providing throughput guarantee in IEEE 802.11 Wireless LANs
指導教授:李程輝
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:62
中文關鍵詞:無線區域網路
外文關鍵詞:IEEE 802.11DCFPCFToken bucketQoSDiffserv
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來,無線通訊漸漸地成為日常生活上便利的工具,不僅使電腦網際網路擁有移動性的便利,甚至可以應用在多種不同的裝置上。多媒體形式的傳輸應用也持續成長,從文字、語音到影像傳輸等;而傳統的盡力式傳輸模式已經無法滿足如此多樣化的應用及其服務需求,主要原因在於這些應用需要適當的服務品質保證,諸如頻寬、封包損失率以及最大傳輸延遲保證。
在本論文中,我們將提出延伸服務機制提供不同服務等級的頻寬保證。這個機制延伸了國際標準組織所制定的無線區域網路(IEEE 802.11)規範。此機制為一分散式機制,並且我們將對原本的規範做最小的改變以達到服務區分的目的。此延伸服務的效能將會以模擬的方式加以驗證。模擬的解果顯示此機制能在不同的網路環境下有非常良好的表現。

Wireless communications are an emerging technology and are becoming an essential feature in the last few years. Not only computer networks are becoming mobile, eventually each device will have a wireless interface. Simultaneously, multimedia is having an equivalent growth from data to voice up to video communications. Some of these applications impose requirements on some communication parameters, such as bandwidths, packet drop rates and delays in order to work properly. However, the traditional networks using best effort transmission mode to deliver data cannot satisfy the service requirements for these applications due to the lack of Quality of Service guarantees.
In this thesis, we provide throughput guarantee with differential service by introducing the enhanced mechanism, which is an extension of IEEE 802.11 MAC protocol. With use of enhanced mechanism, the service of control will be fully distributed and Different service will be achieved by minimizing migration effort on current standard. The performance of proposed mechanism has been evaluated by simulation. Simulation results show the mechanism will behave well in different kinds of scenarios.

1 Introduction
2 Backgrounds
2.1 Distributed Coordination Function
2.2 Point Coordination Function
2.3 Enhanced Distributed Coordination Function
2.4 Hybrid Coordination Function
3 QoS Techniques in 802.11
3.1 DCF based techniques
3.1.1 Backoff increase function
3.1.2 Different DIFS
3.1.3 Maximum Frame Length
3.1.4 Extended DCF
3.1.5 Black burst
3.2 PCF based techniques
3.2.1 Distributed TDM
4 Enhanced guarantee mechanism
4.1 Jamming mechanism
4.2 Token bucket filter
4.3 Enhanced service architecture
5 Throughput analysis
6 Simulation results
7 Conclusions

[1] IETF “Integrated Services” Working Group. http://www2.ietf.org/html.charters/intserv-charter.html
[2] IETF “Differentiated Services” Working Group. http://www2.ietf.org/html.charters/diffserv-charter.html
[3] M. Mouly, M. B. Pautet, “The GSM System for Mobile Communications”, Telecom Pub, June 1992
[4] ETSI, “Digital Cellular Telecommunications System General Packet Radio Services: Service Description EN 301 344 v6.3.2”, July 1999
[5] T. Nandagopal, S. Lu, V. Bharghavan, “A Unified Architecture for the Design and Evaluation of Wireless Fair Queueing Algorithms”, Proceedings of MOBICOM, Seattle, WA, Aug. 1999
[6] V. Bharghavan, “Performance Analysis of a Medium Access Protocol for Wireless Packet Networks”, IEEE Performance and Dependability Symposium, Raleigh, NC, Aug. 1998
[7] V. Bharghavan, A. Demers, S. Shenker, L. Zhang, “MACAW: A Media Access Protocol for Wireless LANs”, Proceedings of ACM SIGCOMM, London, UK, Sept. 1994
[8] B. Bianchi, “Performance analysis of the IEEE 802.11 distributed coordination function.” IEEE J. Select. Areas Commun., vol.18, no.3, pp.535-547, March 2000.
[9] Haitao Wu, Yong Peng, Keping Long, Shiduan Cheng, Jian Ma, “Performance of Reliable Transport Protocol over IEEE 802.11 Wireless LAN: Analysis and Enhancement”, IEEE INFOCOM 2002
[10] Daji Qiao and Kang G. Shin, "Achieving Efficient Channel Utilization and Weighted Fairness for Data Communications in IEEE 802.11 WLAN under the DCF", in Proc. Tenth International Workshop on Quality of Service, Miami Beach, Florida, May 2002.
[11] F. Cali, M. Conti and E. Gregori, “Dynamic tuing of the IEEE 802.11 protocol to achieve a theoretical throughput limit.” IEEE/ACM Trans. Networking, vol. 8, no. 6, pp. 785-799, Dec. 2000
[12] A. Veres, Campbell, A.T, Barry, M. and L-H. Sun, "Supporting Service Differentiation in Wireless Packet Networks Using Distributed Control", IEEE Journal of Selected Areas in Communications (JSAC), October 2001
[13] Barry, M., Campbell, A. T and A. Veres, "Distributed Control Algorithms for Service Differentiation in Wireless Packet Networks ",Proc. IEEE INFOCOM'2001, Anchorage, Alaska, 2001.
[14] Yong Peng, Haitao Wu, Shiduan Cheng, Keping Long, “A New Self-Adapt DCF Algorithm”, IEEE Globecom 2002 , Taipei, Taiwan, 2002.
[15] IEEE Standards Department, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” IEEE Standard 802.11, June 1999
[16] H. S. Chhaya, and S. Gupta, “Performance modeling of asynchronous data transfer methods of IEEE 802.11 MAC protocol,” Wireless Networks, 1997.
[17] J. Weinmiller, H. Woesner, J. Ebert, and A. Wolisz, “Analyzing the RTS/CTS Mechanism in the DFWMAC Media Access Protocol for Wireless LANs,” In IFIP TC6, 1995.
[18] IEEE 802.11 TGe, “EDCF Proposed Draft Text”, TR-01/131r1, March 2001.
[19] IEEE 802.11 TGe, “Hybrid Coordination Function (HCF) — Proposed Updates to Normative Text of D0.1”, TR-01/110r1, March 2001.
[20] IEEE 802.11 TGe, “Introduction to the TGe Hybrid Coordination Function (HCF)”, TR-01/308, May 2001.
[21] IEEE 802.11 TGe, “Signaling for Parameterized QoS Support”, TR-01/557, November 2001.
[22] S. Blake, D. Black, M. Carlson, E. Davies, and W. Weiss, “An Architecture for Differentiated Services,” RFC 2475, 1998.
[23] I. Mahadevan, K. M. Sivalingam, “Quality of Service Architectures for Wireless Networks: IntServ and DiffServ Models,” in Workshop on Mobile Computing at the International Symposium on Parallel Architectures, Algorithms, and Networks, (Perth, Australia), pp 420-425, June 1999.
[24] D-J. Deng, and R-S. Chang, “A priority scheme for IEEE 802.11 DCF access method,” in IEICE Transactions on Communications, E82-B-(1), January 1999.
[25] I. Aad and C. Castelluccia, “Introducing service differentiation into IEEE 802.11” in IEEE Symposium on Computers and Communications, ISCC’00, Antibes-France, July, 2000.
[26] I. Aad and C. Castelluccia, “Differentiation mechanisms for IEEE 802.11” in Proc. of IEEE INFOCOM’01, 2001.
[27] W-T. Chen, B-B. Jian and S-C. Lo, “An Adaptive Retransmission Scheme with QoS Support for the IEEE 802.11 MAC Enhancement” Proc. of IEEE VTC, 2002.
[28] S.Chevrel, A. Aghvani, et al. “Analysis and optimization of the HIPERLAN Channel Access Contention Scheme,” Wireless Personal Communications 4, pp.27-39, Kluwer Acadamic Publishers, 1997.
[29] A. Banchs, X. Perez, M. Radimirsch, and H. J. Stuttgen, "Service differentiation extensions for elastic and real-time traffic in 802.11 wireless LAN," IEEE Workshop on High Performance Switching and Routing, pp.245--249, 2001.
[30] A. Banchs, and X. Perez, “Providing Throughput Guarantees in IEEE 802.11 Wireless LAN, ” WCNC2002, Vol. 1, pp. 130-138

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔