(3.238.240.197) 您好!臺灣時間:2021/04/12 02:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃邦瑞
研究生(外文):Pang-Ruei Huang
論文名稱:積體整合化CMOS5.25GHz射頻收發器前端電路和2.45&5.25GHz共電流雙頻帶低雜訊放大器
論文名稱(外文):Fully Integrated CMOS 5.25GHz RF Transceiver Front-End Circuits and 2.45 & 5.25GHz Concurrent Dual-Band LNA
指導教授:周復芳
指導教授(外文):Christina F. Jou
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:68
中文關鍵詞:射頻收發器雙頻帶低雜訊放大器金氧半場效應電晶體
外文關鍵詞:CMOSFront EndLNARFDual Band
相關次數:
  • 被引用被引用:2
  • 點閱點閱:189
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:47
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文研究中,主要討論兩個主題;第一個主題是CMOS整合射頻收發器前端電路,內容為整合一個傳送/接收開關,一個低雜訊放大器,和一個功率放大器在單一晶片上,並操作在高頻5.25GHz。此射頻前端電路單一全整合晶片中包含一個介入損耗為5.5dB的傳送/接收開關,和一個功率增益為10.7dB,雜訊指數為4.68dB,IIP3為0dBm的低雜訊放大器,和一個輸出1dB功率壓縮點為11dBm,功率增益為7.5dB的功率放大器(量測值)。為了達成單一晶片和系統單晶片的設計目標,此前端電路完全未採用晶片外元件做為匹配的設計以便日後和其他電路整合。射頻收發器前端的工作模式可經由傳送/接收開關的控制電壓切換傳送和接收兩種模態。另一主題為CMOS雙頻帶2.45和5.25GHz低雜訊放大器。此電路亦全使用晶片內的元件達成高整合度的目標。放大器在2.45GHz的功率增益為5.78dB,雜訊指數為4.7dB,IIP3為7dBm,在5.25GHz的功率增益為3.24dB,雜訊指數為5.69dB,IIP3為17dBm,且此量測結果和模擬結果相去不遠。為了減少低雜訊放大器電晶體從矽基板所耦合的雜訊,我們使用雙閘極電晶體當作放大器的電晶體。以上兩組晶片皆以台積電CMOS 0.25-μm 的製程實現並完成量測和模擬比較討論。
This thesis contents two works. First, we implement a fully integrated CMOS RF front-end including a T/R switch, a LNA, and a PA for 5.25GHz application. The single chip front-end circuit consists: a 5.5dB insertion loss transmit/receive switch (T/R sw), a 10.7dB power gain, 4.68dB NF, 0dBm IIP3 low noise amplifier (LNA), and a 11dBm Pout-1dB, 7.5dB power gain power amplifier (PA) (experimental results). To achieve single chip design target, this chip was designed without any off-chip matching component. The front-end circuit was designed for two operation modes: transmission mode (TX) and receiving mode (RX). We can switch two operation modes by changing the control voltage of the T/R switch. Second, we will describe the topology and concepts of the dual-band receiver. Furthermore, we have completed a concurrent dual-band LNA for 2.45GHz and 5.25GHz operation. The LNA has a 5.78dB gain, 4.7 NF, 7 dBm IIP3 at 2.45GHz and 3.24dB gain, 5.69 NF, 17dBm IIP3 at 5.25GHz (experimental results). The simulation and measurement results comparisons are close. We use dual-gate MOSFETs to reduce the coupling noise from the Si-substrate. These two IC have fabricated in a TSMC 0.25-μm CMOS technology. Moreover, the measurement and comparison with simulation had been done.
Chinese Abstract....................................I
English Abstract....................................II
Acknowledgement.....................................III
Contents............................................IV
Tables Captions.....................................VI
Figures Captions....................................VII
CHAP 1 Introduction.................................1
1.1 Motivation..................................1
1.2 Thesis Organization..............................3
CHAP 2 CMOS Technology Application to RF Integrated Circuit..............................................4
2.1 RF CMOS Technology Evolution.....................4
2.2 Active Device and RF Model ......................5
2.3 Passive Device and RF Model......................7
2.3.1 On-Chip MIM Capacitors.......................7
2.3.2 On-Chip Spiral Inductors ....................8
CHAP 3 A 0.25-μm CMOS 5.25 GHz Front-End
Design and Implementation............................11
3.1 Architecture and Measurement Consideration.......11
3.2 Design and Experimental Results of T/R switch ...15
3.2.1 Design of CMOS T/R Switch...................15
3.2.2 Simulation and Measurement results comparison
.....................................................16
3.3 Design and Experimental Results of LNA ..........19
3.3.1 Design of Common-Source with Inductive Degeneration LNA..................................................19
3.3.2 Simulation and Measurement results comparison...........................................22
3.4 Design and Experimental Results of PA............27
3.4.1 Design of CMOS Single Stage Class-A PA......27
3.4.2 Simulation and Measurement results comparison...........................................31
3.5 Design and Experimental Results of Front-End RX/TX mode.................................................37
3.5.1 Design of CMOS 5.25GHz Front-End Circuit....37
3.5.2 Simulation and Measurement results comparison...........................................39
CHAP 4 The 2.45 & 5.25GHz Dual-Band COMS LNA Design and Implementation........................................45
4.1 Dual-Band RF Receiver Architecture ................45
4.2 Dual-Band LNA Architecture and Design Consideration .........................................47
4.3 Simulation and Measurement results comparison......49
CHAP 5 Conclusion.......................................53
5.1 Conclusion ........................................53
5.2 Future Progress.................................55
Reference...............................................56
[1] Shahrzad Tadjpour, ,Ellie Cijvat, Emad Hegazi, Asad A. Abidi, A 900-MHz Dual-Conversion Low-IF GSM Receiver in 0.35-μm CMOS, IEEE journal of solid-state circuits, vol. 36, no. 12, December 2001
[2] Hooman Darabi, Shahla Khorram, Hung-Ming (Ed) Chien, Meng-An Pan, Stephen Wu, Shervin Moloudi,John C. Leete, Member, Jacob J. Rael, Masood Syed, Robert Lee, Brima Ibrahim,Maryam Rofougaran, and Ahmadreza Rofougaran,A 2.4-GHz CMOS Transceiver for Bluetooth, IEEE journal of solid-state circuits, vol. 36, no. 12, December 2001
[3] Feng-Jung Huang, Kenneth O, A 0.5-μm CMOS T/R Switch for 900-MHz Wireless Applications, IEEE journal of solid-state circuits, vol. 36, no. 3, march 2001
[4] Kazuya Yamamoto, Tetsuya Heima, Akihiko Furukawa, Masayoshi Ono,Yasushi Hashizume, Hiroshi Komurasaki, Shigenobu Maeda,Hisayasu Sato, and Naoyuki Kato, A 2.4-GHz-Band 1.8-V Operation Single-ChipSi-CMOS T/R-MMIC Front-End with a LowInsertion Loss Switch, IEEE journal of solid-state circuits, vol. 36, no. 8, August 2001
[5] Ryuichi Fujimoto,Kenji Kojima, and Shoji Otaka, A 7-GHz 1.8-dB NF CMOS Low-Noise Amplifier, IEEE journal of solid-state circuits, vol. 37, no. 7, July 2002
[6] Thomas H. Lee, Member, IEEE, Hirad Samavati, and Hamid R. Rategh, 5-GHz CMOS wireless LANs.
[7] Yuhua Cheng, Senior Member, IEEE, Chih-Hung Chen, Student Member, IEEE, Mishel Matloubian, Member, IEEE, and M. Jamal Deen, Senior Member, IEEE
“High-Frequency Small Signal AC and Noise Modeling of MOSFETs for RF IC Design”
[8] “The Design of CMOS Radio Frequency Integrated Circuits”, Thomas H. Lee
[9] “CMOS RF integrated circuit at 5GHz and beyong”, Thomas H. Lee, SIMON WONG, Proceedings of the IEEE, vol. 88 NO. 10, October 2000
[10] Derek K Shaeffer; Thomas H. Lee, “The Design and Implementation of Low-Power CMOS Radio receivers”.
[11] “RF CMOS Power Amplifiers: Theory, Design and implementation” Mona M. Hella, Mohammed Ismail
[12] “RF Power Amplifiers for Wireless Communication”, Steve C. Cripps
[13] Debanjan Mukherjee, Jishnu Bjattacharhee, Sudipto Chakraborty, and Joy Laskar, “A 5-6 GHz Fully-Integrated CMOS LNA for a Dual-Band WLAN Receiver,” Radio and Wireless Conference, pp. 213-216,2000.
[14] Hossein Hashemi, Student Member, IEEE, and Ali Hajimiri, Member, IEEE
“Concurrent Multiband Low-Noise Amplifiers─Theory, Design, and Applications”IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.50,NO.1,JANUARY2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔