(100.26.179.251) 您好!臺灣時間:2021/04/14 07:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:羅接興
研究生(外文):Jie-Shing Lo
論文名稱:滾齒凸輪接觸特性、製造與組裝之研究
論文名稱(外文):STUDY FOR BEARING CONTACT, MANUFACTURING AND ASSEMBLY OF ROLLER GEAR CAM
指導教授:曾錦煥曾錦煥引用關係
指導教授(外文):Ching-Huan Tseng
學位類別:博士
校院名稱:國立交通大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:133
中文關鍵詞:滾齒凸輪接觸特性空間凸輪過切條件組裝
外文關鍵詞:roller gear camsbearing contactspatial camsundercutting conditionassembly
相關次數:
  • 被引用被引用:1
  • 點閱點閱:451
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:130
  • 收藏至我的研究室書目清單書目收藏:3
由於滾齒凸輪具備高速運轉及可以提供精密分度之特性而廣泛應用於各項自動化之應用案例中。以往對於滾齒凸輪之創成機制及在理想狀況下製造組裝特性已有深入的研究。然而,在實際之製造組裝條件之下,各項誤差之產生實在無法避免,致使理想狀況之線接觸條件不復存在;使得凸輪曲面與凸輪轉子之間的接觸條件轉變成為點接觸。基於實際之點接觸條件,本論文之研究針對分度式滾齒凸輪機構之接觸特性、製造之過切條件及組裝性質。
凸輪機構使用之夀命週期決定於實際的接觸應力。當二個曲面體受負荷作用而做彈性接觸時,二接觸面之間將衍生出接觸橢圓區域。而其伴隨而生之接觸應力將可能造成接觸曲面之損壞,而其形成之接觸橢圓亦將影響曲面之間的潤滑特性。本論文將就滾齒凸輪機構之接觸特性,包括凸輪接觸曲面之主軸曲率、主軸方向,接觸橢圓及接觸赫茲應力等,在點接觸之條件下,利用齒輪原理做有系統之研究。 共軛運動機構之接觸曲面若發生過切,將嚴重影響其運動及動態特性。以往對凸輪機構過切條件之研究,多係針對單一的個別案例。本論文提出無因次化過切條件之數學模型,據此可決定避免過切發生其設計參數之可行區間。此分析結果可提供設計工程師對各項設計條件進行整體評估時,直接而方便的決定避免過切發生的可行設計區間。
本論文中在個人電腦上發展一套自動整合商用套裝分析軟體Mathematica與多功能最佳化分析軟體MOST之最佳化設計流程。在此一設計流程中,設計者可以根據設計參數之實際條件,完成連續及離散型設計參數之最佳化設計。 最後,製造誤差造成對凸輪組裝性能改變的最小變異條件的組裝概念,被用來達成穩健公差設計。此一公差演算規則是依據實體組裝模型、齒面接觸分析技巧及矩陣原理而建立,可以直接以解析法則求得穩健條件之公差配置。此一穩健公差設計之方法並不限於凸輪機構,更而可以方便整合於各類型機構之公差設計。期盼本論文之研究結果將有助於工業界提高滾齒凸輪機構之製造及組裝之精度及品質。

Roller gear cams are widely used in the industry for indexing. Compared with conventional indexing cams, roller gear cams require less space and provide accurate, high-speed motions. To date, most studies have been devoted to develop generation models based on the ideal condition of line contact between the cylindrical type of cutters and cam surfaces. However, due to manufacturing and assembly errors, contacts of a roller gear cam become point contacts rather than line contacts. The bearing contact, the undercutting condition and the assembly tolerance were studied based on the realistic of point contact model in this study. The capability of a cam mechanism for an acceptable lifecycle deeply depends on the stress distribution in the practical contact. When two elastic bodies with curved surface transmit loads from one to the other at the point or line contact, contact area can be developed, and accompanied by compressive contact stress, which may effect the lubrication property, even more, may cause fatigue damages on both of the engaged surfaces. For the idea to study of bearing contact properties, the principal directions and curvatures of the cam surface, the contact ellipse and the Hertzian contact stress are studied in sequence based on gearing theory. Undercutting is very detrimental to the kinematic and dynamic performance. Up to now, most studies on the undercutting condition of the roller gear cam were case by case. A mathematical model for the surface profile of the roller gear cams in dimensionless space is proposed. According to this model, the conditions for non-undercutting are generated with procedure to determine the feasible condition region that is free from undercutting is developed in the dimensionless space. This result can be employed with the design approach to determine the feasible region of design parameters. An integrity and robustness of optimization approach is developed that made engineers take account of all aspect of design, possibly and easily. The studies in this thesis can help engineers to improve the design and manufacturing with higher accuracy and quality of roller gear cam mechanisms. Finally, the concept of the robust assemble condition under the minimum variations caused by manufacturing errors is used to achieve the robust tolerance design. The tolerance algorithm is constructed based on the 3-D assembly model, the tooth contact analysis (TCA) technique and the condition number for the theory of matrix. The investigated results demonstrated in, but not limit to, understanding of the assembly nature of the roller gear cam, and can be easily employed for other type of tolerance design. The results are most helpful to the design and manufacturing of the roller gear cam mechanisms with high accuracy and quality.

TABLE OF CONTENTS
摘 要 i
Abstract iii
Acknowledgement v
Table of Contents vi
List of Tables viii
List of Figures ix
Nomenclatures xi
CHAPTER 1 INTRODUCTION 1
1.1 INTRODUCTION 1
1.2 REVIEW 2
1.2.1 Synthesis and Manufacturing 2
1.2.2 Kinematics 3
1.2.3 Dynamics 5
1.3 THESIS OUTLINES 7
CHAPTER 2 MATHEMATICAL CONTACT MODEL FOR ROLLER GEAR CAM AND FOLLOWERS 8
2.1 INTRODUCTION 8
2.2 SCCA CAM LAWS 8
2.3 MATHEMATICAL MODEL OF THE ROLLER GEAR CAM SURFACE 9
2.4 MATHEMATICAL MODEL FOR THE CAMBER ROLLER 11
2.5 CONTACT ANALYSIS 12
CHAPTER 3 BEARING CONTACT ANALYSIS 19
3.1 INTRODUCTION 19
3.2 ANALYSIS FOR PRINCIPAL DIRECTIONS AND CURVATURES 20
3.2.1 Cylindrical Cutter 20
3.2.2 Generalized Cam Surfaces 22
3.3 CONTACT ELLIPSE 27
3.4 EXAMPLE 28
3.5 HERTZIAN STRESS ANALYSIS 30
3.5.1 Normal Contact Force 31
3.5.2 Contact Ellipse 32
3.6 EXAMPLE 33
3.7 CONCLUDING REMARKS 34
CHAPTER 4 UNDERCUTTING for ROLLER GEAR CAMS 50
4.1 INTRODUCTION 50
4.2 UNDERCUTTING CONDITION FOR THE CAM SURFACE 51
4.2.1 Dimensionless Space for Model of the Roller Gear Cam 51
4.2.2 Equation of Meshing for the Roller Gear Cam 52
4.2.3 Undercutting Conditions for the Roller Gear Cam Surface 53
4.2.4 Geometric limitation of the cutter 59
4.3 NUMERICAL EXAMPLES 60
4.3.1 Example of the Symmetry Index Stroke 60
4.3.2 Example of the Asymmetry Index Stroke 61
4.3.3 Comparison of Different Types of Cam Laws 62
4.4 CONCLUDING REMARKS 63
CHAPTER 5 OPTIMAL DESIGN OF ROLLER GEAR CAMS 76
5.1 INTRODUCTION 76
5.2 MULTI-FUNCTIONAL OPTIMIZATION SYSTEM TOOL (MOST) 77
5.3 INTERFACE COUPLER BETWEEN ANALYSIS AND OPTIMIZATION TOOLS 78
5.4 DESIGN FORMULATION 80
5.4.1. Generation of the cam surface and roller profile 80
5.4.2. Kinematic and bearing properties 82
5.5 NUMERICAL EXAMPLES 84
5.5.1 Example 1 85
5.5.2 Example 2 87
5.6 CONCLUDING REMARKS 88
CHAPTER 6 A ROBUST TOLERANCE DESIGN FOR THE ROLLER GEAR CAM 98
6.1 INTRODUCTION 98
6.2 SIMULATION OF THE CONTACT MODEL 99
6.2.1 Mathematical Model of the Cutter 100
6.2.2 The Cambered Roller 100
6.2.3 Tooth Contact Analysis 102
6.3 DIRECT LINEARIZATION METHOD 102
6.4 ROBUST TOLERANCE ALLOCATION 105
6.5 EXAMPLES AND RESULTS 107
6.5.1 Example 1: Assembly Tolerance Analysis 107
6.5.2 Example 2: Robust Allocation for Assembly Tolerance 108
6.6 CONCLUDING REMARKS 109
CHAPTER 7 CONCLUSIONS AND FURTHER 121
REFERENCE 124
APPENDEX A 130
PUBLICATION LIST 132
VITA 133

REFFERENCES
1. Angeles, J., and Lopez-Cajun, C. S., Optimization of Cam Mechanisms, Kluwer Academic Publishers, 1991.
2. Ardayfio, D. D., and Trower, P. S., “Kinematic Analysis of Three-Dimensional Cams”, ASME Design Engineering Division Conference and Exhibit on Mechanical Vibration and Noise, Cincinnati, Ohio, pp. 1-11, 1985.
3. Arora, J. S., Introduction to Optimum Design, McGraw-Hill, New York, 1989.
4. Backhouse, C. J., and Jones, J. R., “Envelope Theory Applied to Globoidal Cam Surface Geometry”, Proceedings Institution of Mechanical Engineers, Vol. 204, pp. 409-416, 1990.
5. Boor, C. D., A Practical Guide to Splines, Spring-Verlag, New York, 1978.
6. Chakraborty, J., and Dhnade, S. G., Kinematics and Geometry of Planar and Spatial Cam Mechanisms, New York, Wiley, 1977.
7. Chang, Z., Zhang, C., Yuxin, Y., and Wang, Y., “Study on Dynamics of Roller Gear Cam System Considering Clearances”, Mechanism and Machine Theory, Vol. 36, No. 1, pp. 143-152, 2001.
8. Chen, F. Y., Mechanics and Design of Cam Mechanism, Pergamon Press, New York, 1982.
9. Dhande, S. G., Bhadoria, B. S. and Chakraborty, J., “A Unified Approach to the Analytical Design of the Three-dimensional Cam Mechanisms”, ASME Journal of Engineering for Industry, Vol. 97, pp. 327-333, 1975.
10. Dittrich, D., and Zakel, H., “Classification and Design of Three-Dimensional Cam Mechanism”, Proceedings 5th World Congress on Theory of Machines and Mechanism, Vol. 2, pp. 1086-1089, 1979.
11. Gao, J., Chase, K. W., and Magleby, S. P., “Generalized 3-D Tolerance Analysis of Mechanical Assemblies with Small Kinematic Adjustments”, IIE Transactions, Vol. 30, pp. 367-377, 1998.
12. Gonzales-Palacios, M. A., and Angeles, J., Cam Synthesis, Kluwer Academic Publishers, 1993.
13. Gonzalez-Palacios, M. A., and Angeles, J., “Generation of Contact Surfaces of Indexing Cam Mechanism—a Unified Approach”, Transactions of the ASME, Journal of Mechanical Design, Vol. 116, No. 2, pp. 369-374, 1994.
14. Gonzalez-Palacios, M. A., and Angeles, J., Cam Synthesis, Kluwer Academic Publishers, Boston, 1993.
15. Hock, W., and Schittkowski, K., Lecture Notes in Economics and Mathematical System, Vol. 187: Test Examples for Non-linear Programming Codes, Springer, New York, 1980.
16. IFToMM Commission A, “Terminology for the Theory of Machines and Mechanisms”, Mechanism and Machine Theory, Vol. 26, No. 5, pp. 435-539, 1991.
17. Jones, J. R., Cams and Cam Mechanisms, Mechanical Engineering Publication Ltd., London, 1978.
18. Koloc, Z., and Vaclavik, M., Cam Mechanisms, Elsevier Science Publishers, Amsterdam, 1993.
19. Kuang, J. H., Ho, J. Y., and Huang, S. B., “Dynamic Responses of a Roller Gear Cam System”, The 10th World Congress on the Theory of Machines and Mechanisms, Oulu, Finland, 1999a.
20. Kuang, J. H., Ho, T, Y., and Hu, C. C., “Dynamic Responses of the Roller Gear Cam System with a Torque Compensation Mechanism”, Proceedings of the 2nd National Conference on the Design of Mechanisms and Machines, Taiwan, pp. 209-216, 1999b.
21. Lancaster, P., Theory of Matrices, Academic Press, New York, 1969.
22. Litvin, F. L., Theory of Gearing. NASA RP-1212 (AVSCOM 88-C-035), Washington, D.C., 1989.
23. Litvin, F. L., and Tsay, C. B., “Helical Gears with Circular Arc Teeth: Simulation of Conditions of Meshing and Bearing Contact”, Transactions of the ASME, Journal of Mechanisms, Transmissions and Automation in Design, Vol. 107, pp. 556-564, 1985.
24. Litvin, F. L., Chen, N. X., and Chen, J. S., “Computerized Determination of Curvature Relations and Contact Ellipse for Conjugate Surfaces”, Computer Methods Apply Mechanics Engineering, Vol. 125, pp. 151-170, 1993.
25. Litvin, F. L., Gear Geometry and Applied Theory, Prentice-Hall, New York, 1994.
26. Mathematica 4.0, Software, Stephen Wolfram Research, Inc, 1996.
27. MISUMI, MISUMI Production Catalog 1993-1995, Tokyo, Japan, MISUMI Corporation, pp. 509-514, 1993.
28. Oizumi, T., and Emura, T., “Globoidal — Cam Type Gearing”, Proc. 92 Int. Power Transm. Gearing Conference ASME Design Engineering Division, New York, Vol. 43 (2), pp. 535-541, 1992.
29. Phadke, M. S., Quality Engineering Using Robust Design, AT&T Bell Laboratories, 1989.
30. Raven, F. H., “Analytical Design of Cams and Three-Dimensional Cams by Independent Position Equations”, Journal of Apply Mechanics, Transaction of ASME, Vol. 26, No. 1, pp. 18-24, 1959.
31. Reeve, J., Cams for Industry, Mechanical Engineering Publication Limited, London, 1995.
32. Taguchi, G., “Performance Analysis Design,” International Journal of Production Design, Vol. 16, pp.521-530, 1978.
33. Ting, K. L., and Long. Y., “Performance Quality and Tolerance Sensitivity of Mechanisms”, Transactions of the ASME, Journal of Mechanical Design, Vol. 118, pp. 144-150, 1996.
34. Tsai, Y. C., and Huang, P. C., “Adaptive Assembly of Roller Gear Cam Mechanism,” The 5th National Applied Mechanisms and Robotics Conference, Cincinnati, OH, USA, 1997.
35. Tsay, D. M., and Lin, B. J., “Design and Machining of Globoidal Index Cams”, ASME Journal of Manufacturing Science and Engineering, Vol. 119, No. 1, pp. 21-29, 1997.
36. Tsay, D. M., and Wei, H. M., “A General Approach to the Determination of Planar and Spatial Cam Profiles”, Transactions of the ASME, Journal of Mechanical Design, Vol. 118, pp. 259-265, 1996.
37. Tsay, D. M., Ho, H. C., and Wang, K. C., “Design of Torque Balancing Cams for Globoidal Cam Indexing Mechanisms”, Transactions of the ASME, Journal of Mechanical Design, Vol. 124, n 3, pp. 441-447, 2002.
38. Tsay, D. M., and Huey jr., C. O., “Application of Rational B-Spline to the Synthesis of Cam-Follower Motion Programs”, Transactions of the ASME, Journal of Mechanical Design, Vol. 115, pp. 621-626, 1993.
39. Tsay, D. M., and Huey jr., C. O., “Cam Motion Synthesis Using Spline Functions”, ASME Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 110, pp. 161-165, 1988.
40. Tseng, C. H., and Arora, J. S., “On Implementation of Computational Algorithms of Optimal Design 1: Preliminary Investigation”, International Journal for Numerical Methods in Engineering, Vol. 26, pp. 1365-1384, 1988a.
41. Tseng, C. H., and Arora, J. S., “On Implementation of Computational Algorithms of Optimal Design 2: Extensive Numerical Investigation”, International Journal for Numerical Methods in Engineering, Vol. 26, pp. 1385-1402, 1988b.
42. Tseng, C. H., and Lu, T. W., 1990, “Minimax Multi-objective Optimization in Struture Design”, International Journal of Numerical Method in Engineering, Vol. 30, pp. 1213-1228, 1990.
43. Tseng, C. H., Liao, W. C., and Yang, T. C., MOST 1.1 User's Manual. Technical Report No. AODL-93-01, Department of Mechanical Engineering, National Chiao-Tung Univ., Taiwan, R.O.C, 1993.
44. Tseng, C. H., Wang, L. W., and Ling, S. F., “Enhancing Branch-and Bound Method for Structural Optimization”, Journal of Structural Engineering, Vol. 121, No. 5, pp. 831-837, 1995.
45. Wang, W. H., Tseng, C. H., and Tsay, C. B., “Surface Contact Analysis for a Spatial Cam Mechanism”, Transactions of the ASME, Journal of Mechanical Design, Vol. 119, No. 1, pp. 169-177, 1997.
46. Wang, W. H., Tseng, C. H., and Tsay, C. B., “The Analysis of Preload Condition in Positive-Drive Spatial Cam Mechanism”, Journal of the CSME, Vol. 18, No. 4, pp. 311-319, 1997.
47. Yan, H. S., and Chen, H. H., “Geometry Design of Globoidal Cams with Generalized Meshing Turret-rollers”, Journal of Mechanical Design, Transactions of the ASME, Vol. 118, No. 2, pp. 243-249, 1996.
48. Yan, H. S., and Chen, H. H., “Geometry Design and Machining of Roller Gear Cams with Cylindrical Rollers”, Mechanism and Machine Theory, Vol. 29, No. 6, pp. 803-812, 1994a.
49. Yan, H. S., and Chen, H. H., “Geometry Design of Roller Gear Cams with Conical Rollers”, Journal of CSME, Vol. 15, No. 5, pp.479-485, 1994b.
50. Yan, H. S., and Chen, H. H., “Geometry Design of Roller Gear Cams with Hyperboloidal Rollers”, Mathematical and Computer Modeling, Vol. 22, No. 8, pp. 107-117, 1995.
51. Yan, H. S., and Cheng, W. T., “Curvature Analysis of Spatial Cam-Follower Mechanisms”, Mechanism and Machine Theory, V. 34, No. 2, pp. 319-339, 1999.
52. Yang, T. C., and Tseng, C. H., “Integrating and Automating Analysis and Optimization”, Computers & Structure, Vol. 48, No. 6, pp.1083-1106, 1993.
53. Zhang, H. C., Advanced Tolerancing Techniques, Wiley, New York, 1997.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔