(3.230.143.40) 您好!臺灣時間:2021/04/21 06:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許家銘
研究生(外文):Chia-Ming Hsu
論文名稱:在薄型固態燃料上火焰傳播之實驗觀測
論文名稱(外文):Experimental Visualization of Flame Spread Over a Thin Solid Fuel
指導教授:陳俊勳陳俊勳引用關係
指導教授(外文):Chiun-Hsun Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:91
中文關鍵詞:flame spreadthermal thin fuelinclined angle
外文關鍵詞:火焰傳播熱薄型燃料傾斜角
相關次數:
  • 被引用被引用:0
  • 點閱點閱:140
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
本論文係以實驗的方式來觀測火焰在薄型固態燃料上傳播的現象。此實驗所改變的參數包括了:(1) 傾斜角、(2) 紙張厚度、(3) 紙張寬度。首先探討傾斜角的影響,發現火焰傳播速度會隨著傾斜角的增加而減小。其次討論紙張厚度對於火焰傳播速度的影響,結果發現,火焰傳播速度會隨著紙張厚度的增加而減小。最後則為紙張寬度的影響,發現向下火焰的傳播速度在q ³ 30°時,紙張的寬度幾乎不會影響到火焰傳播速度。另一方面,向上火焰的傳播速度則是隨著紙張寬度的增加而增加。而在2D及3D現象的討論方面,則是發現火焰前端在紙張厚度比較薄以及紙張寬度比較窄的情況之下,會呈現一個比較好的2D現象。另外,隨著傾斜角度的增加,火焰前端的2D現象則會愈來愈明顯。此外也探討了有無玻璃板對於火焰的影響,發現火焰在沒有玻璃板的情況之下,火焰受到兩旁空氣自然對流引入的影響,呈現一個上下振盪的現象。假如有玻璃板的話,火焰則會相對的穩定。對於樣品A,在垂直向上火焰時,在紙張寬度為0.5 cm時,火焰成長到最後會熄滅。而對於樣品B和C,其極限的紙張寬度則是為1.4 cm。對於垂直向下火焰而言,樣品A的極限紙張寬度為1.1 cm,其火焰成長到最後亦會熄滅。而同樣的情況在樣品B和C則是1.6 cm。其原因為此時火焰的強度已經非常弱了,再加上散失到外界環境的熱量相對的愈來愈多,因此火焰就會熄滅。

This thesis observes the flame spread behaviors and measures the rates over the thin solid fuels by varying three parameters, which are the inclined angle (q), paper thickness (2 ) and separation distance (d), respectively. The flame spread rate decreases as the inclined angle and the thickness increases. For the separation distance effect, it shows having almost no influence on downward flame spread rate for q ³ 30°, whereas for upward flame spread, the flame spread rate is faster as the separation distance becomes wider for all of orientation. The flame front is closer to 2D pattern in a thinner sample or a narrower separation distance. Also, it displays the more 2D likely flame appearance by increasing the inclined angle. Without glass plates, the flame shows an oscillation behavior. On the other hand, the flame is relative stable with an installation of sidewalls. The limiting separation distance is 0.5 cm in Sample A (2 =0.02cm) for vertically upward spreading flame, whereas they are 1.4 cm for sample B (2 =0.01cm) and C (2 =0.005cm). For downward flame spread, the limiting one is 1.1 cm for Sample A, and 1.6 cm for both Sample B and C. It is indicates that upward flame spread is more hazardous.

CONTENTS
ABSTRACT(CHINESE)..............................................I
ABSTRACT(ENGLISH).............................................II
CONTENTS.....................................................III
LIST OF TABLES.................................................V
LIST OF FIGURES...............................................VI
NOMENCLATURE................................................VIII
CHAPTER ONE....................................................1
INTRODUCTION...................................................1
1.1 Motivation.................................................1
1.2 Literature Review..........................................2
1.3 Scope of Present Study.....................................7
CHAPTER TWO....................................................9
EXPERIMENTAL APPARATUS.........................................9
2.1 Sample Holder..............................................9
2.2 Paper Sample..............................................10
2.3 Ignition System...........................................10
2.4 Digital Video.............................................11
2.5 Measurement of Flame Spreading Rate.......................11
2.6 Experimental Procedure....................................12
CHAPTER THREE.................................................13
UNCERTAINTY ANALYSIS..........................................13
3.1 Analyze the Uncertainty Propagation in Measurements.......13
3.1.1 Error in measurement of sample width....................13
3.1.2 Error in measurement of sample density..................14
3.1.3 Error in measurement of initial temperature.............14
3.1.4 Error in measurement of time............................14
3.2 The Process of Uncertainty Analysis in Calculation........15
3.3 Uncertainty Level Analysis in the Experiment..............16
3.4 The Experimental Repeatability............................17
CHAPTER FOUR..................................................19
RESULTS AND DISCUSSION........................................19
4.1 Downward flame spread.....................................19
4.2 Upward flame spread.......................................25
4.3 Comparisons of downward and upward flame spread...........27
4.3.1 The Flame Shape in 2-D or 3-D...........................27
4.3.2 The Effects of Sidewall and Non-sidewall................28
4.3.3 The Limiting Separation Distance and Angle for Flame Extinction....................................................29
CHAPTER FIVE..................................................31
CONCLUSIONS...................................................31
REFERENCE.....................................................33

Altenkirch, R. A., Eichhorn, R. and Shang, P. C., “Buoyancy Effects on Flames Spreading Down Thermally Thin Fuels,” Combustion and Flame, Vol. 37, pp. 71-83 (1980).
Chen, C. H. and Chan, S. C., “A Numerical Analysis of Horizontal Flame Spread over a Thin Fuel in Normal and Elevated Gravity Regime,” Combust. Sci. Technol., Vol. 107, pp. 59-80 (1995).
Chen, C. H. and Yang, M. T., “A Numerical Analysis of Flame Spread over a Thin Fuel Inclined from Vertically Downward to Horizontal,” Journal of the Chinese Society of Mechanical Engineers, Vol. 19, pp. 397-410 (1998).
Coleman, H. W. and Steele, W. G., Experimentation and Uncertainty Analysis for Engineers, 2nd Ed., John Wiley and Sons, New York, N. Y., (1998).
de Ris, J. N., “Spread of a Laminar Diffusion Flame,” Twelfth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 241-252 (1969).
Delichatsios, M. A., “Exact Solution for the Rate of Creeping Flame Spread over Thermally Thin Materials,” Combust. Sci. and Tech. Vol. 44, pp. 257-267 (1986).
Di Blasi, C., “Processes of Flames Spreading over the Surface of Charring Fuels: Effects of the Solid Thickness,” Combustion and Flame Vol. 97, pp. 225-239 (1994).
Duh, F. C. and Chen, C. H., “A Theory for Downward Flame Spread over a Thermally-Thin Fuel,” Combust. Sci. Technol. Vol. 77, pp. 291-305 (1991).
Duh, F. C. and Chen, C. H., “Theoretical and Experimental Analyses of Downward Flame Spread Over a Thermally-Thin Fuel,” Ph. D. Thesis, Department of Mechanical Engineering, National Chiao-Tung University, Hsinchu, Taiwan (1992).
Fernandez-Pello, A. C., and Hirano, T., “Controlling Mechanisms of Flame Spread,” Combust. Sci. Technol., Vol. 32, pp. 1-31 (1983).
Hirano, T., Noreikis, S.E., and Waterman, T.E., “Postulations of Flame Spread Mechanisms,” Combust. Flame, Vol. 22, pp.353-363 (1974a).
Hirano, T., Noreikis, S.E., and Waterman, T.E., “Measured Velocity and Temperature Profiles near Flame Spreading over a Thin Combustible Solid,” Combust. Flame, Vol. 23, pp. 83-96 (1974b).
Holman, J. P., Experimental Methods for Engineers, 5th Ed., McGraw-Hill, New York, (1989).
Kline, S. J., “The Purposes of Uncertainty Analysis,” The Journal of Fluids Engineering, Vol. 107, pp. 153-160 (1985).
Kumar, A., Shih H. Y. and T’ien J. S., “A Comparison of Extinction Limits and Spreading Rates in Opposed and Concurrent Spreading Flames over Thin Solids,” Combustion and Flame, Vol. 132, pp. 667-677 (2003).
Lastrina, F. A., Magee, R. S. and McAlevy III, R. F., “Flame Spread over Fuel Beds: Solid-phase Energy Considerations,” Thirteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 935-948 (1971).
Lin, P. H. and Chen, C. H., “Numerical Analyses for Downward Flame Spread over Thin and Thick Fuels in a Gravitational Field.” Combustion and Flame Vol. 118, pp. 744-746 (1999).
Moffat, R. J., “Using Uncertainty Analysis in the Planning of an Experiment.” The Journal of Fluids Engineering, Vol. 107, pp. 173-178 (1985).
Quintiere, J. G., “The Effects of Angular Orientation on Flame Spread over Thin Materials,” Fire Safety Journal Vol. 36, pp. 291-312 (2001).
Suzuki, M., Dobashi, R., and Hirano, T., “Behavior of Fires Spreading Downward over Thick Paper,” Twenty-fifth Symposium (International) on Combustion, The combustion Institute, Pittsburgh, pp. 1439-1446 (1994).
Takahashi, S., Nagumo, T., Wakai, K., and Bhattacharjee, S., “Effects of Ambient Condition on Flame Spread over a Thin PMMA Sheet,” JSME International Journal Serious B, Vol. 43, pp. 556-562 (2000).
Williams FA, “Mechanism of Fire Spread,” Sixteenth Symposium (International) on combustion, The combustion Institute, Pittsburgh, pp. 1281-1294 (1977).
Wu, K. K. and Chen, C. H., “A Numerical Analysis of Ignition to Steady Downward Flame Spread Over a Thin Solid Fuel,” Combust. Sci. and Tech., in press (2003).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔