(100.26.179.251) 您好!臺灣時間:2021/04/12 21:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃重凱
研究生(外文):Chung-Kai Huang
論文名稱:智慧型模仁的初步開發
論文名稱(外文):Preliminary Development of Intelligent Mold Insert
指導教授:陳仁浩
指導教授(外文):Ren-Haw Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:66
中文關鍵詞:模仁熱壓成形感測器轉印性
相關次數:
  • 被引用被引用:15
  • 點閱點閱:161
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
微成形是經由射出成形、反應射出成形或熱壓成形等技術來量產塑膠微結構。由於在充模成形後,模具降溫至開模溫度時材料會因為模仁快速降溫而產生收縮,對模穴會有充填不完全的情形發生,因而造成成形品轉印性不佳的缺陷。為了改善這種情況,希望在模具降溫到開模溫度時模仁能保持適當的高溫,因此本研究以製作智慧型模仁為目的,採用半導體的各項相關製程,利用P型(100)之矽晶片為基材當作模仁,在其中製造出有適當阻值、能導電的區域,同時引入熱電阻的觀念,對導電區域通入電壓或電流,讓導電區域能夠導通並產生熱量,作為熱壓完成後降溫開模時模仁維持溫度的來源。再者,並探討導電區域阻值與溫度及阻值與壓力的關係,期能發展出『嵌入式壓力、溫度感測器』,以便實際感測模仁的溫度、壓力,達到即時監控溫度、壓力的目的,如此有助我們提高脫模後的成形品的品質。
由實驗結果得知,保持適當的高溫可以有效改善轉印性。同時溫度越高,導電區域阻值有下降的趨勢;壓力越高,導電區域阻值亦有下降的趨勢。
Micro molding is a technology of replicating plastic microstructure by injection molding, reaction injection molding, and hot embossing. In these various processes, shrinking of polymer material in the cooling stage may lead the mold cavities to be filled incompletely. This causes the defect of bad shape-transformation. To improve this situation, keeping the mold insert at a satisfactory high temperature while the mold is cooling down seems to be a useful solution. This research attempt to develop an intelligent mold insert for above purpose. Semiconductor processes are employed and P type (100) silicon wafer is used as the substrate to produce conducting regions with desired resistance. Then these conducting regions with suitable resistance are utilized as the heaters, charged an electric current, to heating the mold insert in the cooling stage. Furthermore, effects of temperature and pressure, respectively, on the resistance are investigated for the creating of temperature-sensing and pressure-sensing function on the mold insert.
From the results, keeping suitable high temperature can improve the shape-transformation of microstructures. And for higher temperature and higher pressure, the resistance of conducting area will decrease.
中文摘要…………………………………………………………………Ⅰ
英文摘要…………………………………………………………………Ⅱ
致謝………………………………………………………………………Ⅲ
目錄………………………………………………………………………Ⅳ
表目錄……………………………………………………………………Ⅵ
圖目錄……………………………………………………………………Ⅶ
第一章 序論……………………………………………………………1
1.1 前言………………………………………………………1
1.2 文獻回顧…………………………………………………2
1.3 研究動機與目的…………………………………………4
1.4 研究方法…………………………………………………5
第二章 半導體製程……………………………………………………7
2.1 晶圓清潔…………………………………………………………7
2.2 氧化層製作………………………………………………………8
2.2.1 氧化原理…………………………………………………8
2.2.2 化學氣相沈積……………………………………………9
2.3 微影………………………………………………………………9
2.3.1 光阻塗佈………………………………………………10
2.3.2 曝光……………………………………………………11
2.3.3 顯影……………………………………………………11
2.4 蝕刻……………………………………………………………11
2.5 摻雜……………………………………………………………13
2.5.1 擴散法原理……………………………………………13
2.5.2 離子植入法原理………………………………………15
第三章 智慧型模仁之製作………………………………………19
3.1 實驗目的………………………………………………………19
3.2 實驗儀器與設備………………………………………………19
3.3 實驗方法………………………………………………………20
3.3.1 實驗流程………………………………………………20
3.3.2 導電區域的兩端拉出導線……………………………24
3.3.3 溫度、壓力對阻值的實驗……………………………24
3.3.4 熱壓成形實驗…………………………………………24
第四章 實驗結果與討論……………………………………………29
4.1 摻雜處理的參數值的選擇……………………………………29
4.1.1 P型與N型晶片的摻雜特性……………………………29
4.1.2 二氧化矽層厚度之決定………………………………30
4.1.3 摻雜溫度及時間對晶片阻值的影響…………………30
4.1.4 不同的導電區線寬及線長設計對摻雜後的晶片阻值的影響……………………………………………………31
4.2 溫度與壓力對摻雜改質後的晶片阻值的影響………………32
4.2.1 溫度的效應……………………………………………32
4.2.2 壓力的效應……………………………………………32
4.3 溫度與壓力對離子佈植法改質後的晶片阻值的影響………33
4.3.1 溫度的效應……………………………………………34
4.3.2 壓力的效應……………………………………………34
4.4 智慧型模仁的製作與應用……………………………………35
第五章 結論………………………………………………………56
參考文獻……………………………………………………………58
附錄…………………………………………………………………61
[1] 吳清沂,鍾震桂, “微機電系統技術簡介”,科儀新知,Vol. 18, No. 3, pp.26-40, 1996.
[2] J. Bryzek, “Impack of MEMS technology on society”, Sensors and Actuators. 56A, pp. 1-9, 1996
[3] 周敏傑, “LIGA製程技術發展現況”, 機械工業雜誌, pp. 131-147, 民國85年1月.
[4] E. W. Becher, W. Ehrfeld, P .Hagmann, A. Maner and D. Munchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process)”, Microelectronic Engineering. Vol. 4, pp. 35-56, 1986.
[5] M. Harmening, W. Bacher, P. Bley, A.El-kaholi, H. Kalb, B. Kowanz, W. Menz, A. Michel and J. Mohr, “Molding of threedimensional microstructure by LIGA process”, Proceedings of the IEEE Micro Electro Mechanical Systems, pp.202-207,1992.
[6] C. Marques, Y. M. Desta, J. Rogers, M. C. Murphy, and K. Kelly, “Fabrication of High-Aspect-Ratio Microstructures on Planner and Nonplanar Surfaces Using a Modified LIGA Process”, Journal of Microelectromechanical System, Vol.6, No.4, pp. 329-336, 1997.
[7] W. bacher, W. Menz and J. Mohr, “The LIGA technique and its potential for Microsystems — A survey”, IEEE Transactions on Industrial Electronics. 42(5), pp. 431-441, 1995.
[8] L. Weber, W. Ehrfeld, H. Freimuth, M. Lacher, H. Lehr and Bernhard Pech, “Micro molding — A powerful tool for the large scale production of precise microstructure”, SPIE. 2879, pp. 156-167, 1996.
[9] H. S. Lee, S. K. Lee, T. H. Kwon, and S. S. Lee, ”Microlenses array fabrication by hot embossing process”, Optical MEMS, pp.73-74, 2002.
[10] N. Huber and Ch. Tsakmakis, “Finite element simulation of microstructure demolding as part of the LIGA process”, Microsystem Technologies, Vol.2, pp. 17-21,1995.
[11] S. Y. Chou and P. R. Krauss, “Imprint lithography with sub-10nm feature size and high throughput”, Microelectronic Engineering, Vol.35, pp.237-240, 1997.
[12] R. W. Jaszewaki, H. Schift, J. Gobrecht and P. Smith, “Hot embossing in polymers as a direct way to pattern resist”, Microelectronic Engineering.41/42, pp.575-578, 1998.
[13] L. Lin, C. J. Chiu, W. Bacher and M. Heckele, “Microfabrication Using Silicon Mold Inserts and Hot Embossing”, Micro Machine and Human Science, pp.67-71, 1996.
[14] X. C. Shan and R. Maeda, “Development of a Low-Cost 8x8 Optical Switch Using Micro Hot Embossing”, Optical MEMS, pp.21-22, 2002.
[15] A. D. McConnell, S. Uma, Member, IEEE and K. E. Goodson, Associate Member, IEEE, “Thermal Conductivity of Doped Polysilicon Layers”, Journal of Microelectromechanical systems. Vol.10, No.3, pp.360-368, 2001.
[16] R. C. Luo and C. S. Tasi, “Thin Film PZT Pressure/Temperature Sensory Arrays for On-line Monitoring of Injection Molding”, IEEE Industrial Electronics Society, pp.375-380, 2001.
[17] 莊達人,VLSI製造技術,高立出版社,2000。
[18] 陳力俊,微電子材料與製程,中國材料科學學會,2000。
[19] 張俊彥,鄭晃忠等,積體電路製程及設備技術手冊,經濟部技術處,1997。
[20] W. Lang, “Silicon microstructuring technology” Materials Science and Engineering, R17, pp.1-55, 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔