跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/17 21:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張志銘
研究生(外文):Jr-Ming Chang
論文名稱:介電液FC-72於小間隙雙套管內蒸發熱流特性之實驗研究
論文名稱(外文):Thermo-Hydraulic Characteristics of FC-72 Evaporation in a Small-Gap Annulus
指導教授:盧定昶
指導教授(外文):Ding-Chong Lu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:75
中文關鍵詞:熱傳係數
外文關鍵詞:heat transfer coefficient
相關次數:
  • 被引用被引用:0
  • 點閱點閱:111
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本論文以實驗方法探討介電液FC-72於小間隙雙套管內,飽和壓力1.15大氣壓的蒸發熱傳係數與兩相流動壓降特性,並觀察其流動情形以研究兩相蒸發的熱傳機制。測試段為內徑22mm、外徑25mm,間隙1.5mm的水平雙套管,質通量範圍為 ,熱通量範圍為 。結果顯示熱傳係數及壓降均隨乾度、質通量及熱通量的增加而增加。但質通量對於壓降在高乾度區才有顯著的影響,而熱通量影響的效果非常有限。將本實驗熱傳係數及壓降的實驗值與前人之熱傳經驗式及壓降經驗式做比較,發現熱傳經驗式的預測值以Wattelet&Chato(1994)最佳,在±40%以內;而Friedel(1979)及Souza(1993)的經驗式對於液態摩擦乘數的預測均低估了本實驗的實驗值。在質通量 ,熱通量 ,由不同乾度的流譜可視化照片可看出當乾度為0.09時,流譜的型態趨近為柱塞流(Plug Flow),當乾度為0.399時,此時的型態趨近於為波浪流(Wavy Flow)或塊狀流(Slug Flow),當乾度增加至0.65時,液膜幾乎已乾化,僅剩下底部的小部分液體。

The characteristics of evaporative heat transfer coefficient and two-phase flow pressure drop for FC-72 at saturation pressure 1.15atm in a small-gap annulus were investigated experimentally and observed by flow pattern observation. The test section was a horizontal annulus with inside diameter 22mm, outside diameter 25mm with a gap 1.5mm. The range of mass flux was from 50 to 100 and heat flux from 1.0 to 5.0 . The results showed that the heat transfer coefficients and pressure drops both increased with quality, mass flux and heat flux. For pressure drops, the effect of mass flux was noticeable at high vapor quality, but the effect of heat flux was much smaller than that of mass flux. When compared with experimental data for proposed correlations reported in the literature, Wattelet&Chato’s(1994) heat transfer correlation predicted well within ±40%, but Friedel’s(1979) and Souza’s(1993) pressure drop correlation predicted very poorly. For mass flux of , heat flux of and quality of 0.09, the flow pattern was plug flow. For quality of 0.399, the flow pattern was wavy flow or slug flow. For quality of 0.65, the liquid film almost dried out and just had few liquid at the bottom portion of the annulus.

目錄內容 頁數
中文摘要.................................................Ⅰ
英文摘要.................................................Ⅱ
誌謝.....................................................Ⅲ
目錄.....................................................Ⅳ
表目錄...................................................Ⅵ
圖目錄...................................................Ⅶ
符號說明.................................................Ⅹ
第一章 緒論...............................................1
1-1、研究背景與目的.................................1
1-2、文獻回顧.......................................2
第二章 實驗系統..........................................15
2-1、工作流體性質..................................15
2-2、系統架構......................................15
2-3、輔助系統......................................19
2-4、實驗量測數據..................................19
2-5、實驗前之準備工作及步驟........................20
2-6、實驗條件......................................23
2-7、實驗穩定判斷及注意事項........................23
第三章 理論分析..........................................30
3-1、測試段-雙套管內介電液的蒸發熱傳係數...........30
3-2、測試段-雙套管內介電液的流動壓降分析...........32
第四章 實驗結果與論......................................35
4-1、實驗條件......................................35
4-2、實驗結果與討論................................35
4-3、經驗方程式....................................41
第五章 結論與未來展望....................................65
5-1、結論..........................................65
5-2、未來展望......................................66
參考文獻.................................................67
附錄.....................................................70

參考文獻
1. Hasan A. & Roy R. P., 1990, “Experiments on Subcooled Flow Boiling Heat Transfer in a Vertical Annular Channel”, Int. J. Heat Mass Transfer, Vol. 33, No. 10, 2285-2293.
2. Eckels S. J. & M. B. Pate, 1991, “Evaporation and Condensation of HFC-134a and CFC-12 in a Smooth Tube and a Micro-Fin Tube”, ASHRAE Trans. Part 99, 71-81.
3. Wattelet J. P. & Chato J. C. et al, 1994, “Evaporative Characteristics of R-12, R-134a, and a Mixture at Low Mass Fluxes”, ASHRAE Trans., Part 1, Vol 101 ,603-615.
4. Wang C. C. & Kuo C. S. et al, 1996, “Two-Phase Flow Heat Transfer and Friction Characteristics of R-22 and R-407C”, ASHRAE Trans., Part 102, 830-838.
5. Kuo C. S. & Wang C. C., 1996, “In-tube Evaporation of HCFC-22 in a 9.52mm Micro-Fin /Smooth Tube”, Int. J. Heat Mass Transfer, Vol.39 , No.12 , 2559-2569.
6. Liu X., 1997, “Condensing and Evaporating Heat Transfer and Pressure Drop Characteristics of HFC-134a and HCFC-22”, Trans. of the ASME, Vol.119, 158-163.
7. Yan Y. Y. & Lin T. F., 1998, “Evaporation Heat Transfer and Pressure Drop of Refrigerant R-134a in a Small Pipe”, Int. J. Heat Mass Transfer, Vol. 41, 4183-4194.
8. Yin C. P. & Yan Y. Y. et al, 2000, “Subcooled Flow Boiling Heat Transfer of R-134a and Bubble Characteristics in Horizontal Annular Duct”, Int. J. Heat Mass Transfer , Vol. 43, 1885-1896.
9. Choi T. Y. & Kim Y. J. & Kim M. S. & S. T. Ro, 2000, “Evaporation Heat Transfer of R-32, R-134a, R-32/R-134a and R-32/125/134a Inside a Horizontal Smooth Tube”, Int. J. Heat Mass Transfer, Vol. 43, 3651-3660.
10. Seo K. & Kim Y., 2000, “Evaporation Heat Transfer and Pressure Drop of R-22 in 7 and 9.52mm Smooth/Micro-Fin Tubes”, Int. J. Heat Mass Transfer, Vol. 43 , 2869-2882.
11. Gungor K. E. & Winterton R. H. S., 1986, “A General Correlation for Flow Boiling in Tubes and Annuli”, Int. J. Heat Mass Transfer, Vol. 29, No. 3, 351-358.
12. Gungor K.E. & Winterton R.H.S., 1987, “Simplified General Correlation for Saturated Flow Boiling and Comparisons of Correlations with Data”, The Canadian Journal of Chemical Engineering, Vol. 65, No. 3 ,148-156.
13. Liu Z. & Winterton R.H.S., 1991,“A General Correlation for Saturated and Subcooled Flow Boiling in Tubes and Annuli”, J. Heat Transfer, Vol.112 , 219~228
14. Wattelet J.P. & Saiz J.M.& Chato J.C. & Panek J.S. &Souza A.L. ,1992,“Experimental Evaluation of Convective Boiling of Refrigerants HFC-134a and CFC-12”, Two-Phase Flow and Heat Transfer , ASME HTD-197, 121~127.
15. 陳信男2001,“介電液FC-72在微小管道內的蒸發熱流分析”,國立交通大學機械工程研究所碩士論文.
16. Lockhart R. W. & Martinelli R. C., 1949, “Proposed Correlation of Data for Isothermal Two-Phase Two- Component Flow in Pipes”, Chemical Engineering Progress, Vol. 45, 39-48.
17. Chisholm D., 1967, “A Theoretical Basis for the Lockhart-Martinelli Correlation for Two-Phase Flow”, Int. J. Heat Mass Transfer, Vol. 10, 1767-1778.
18. Wambsganss M. W., 1991, “Frictional Pressure Gradients in Two-Phase Flow in a Small Horizontal Rectangular Channel”, Experimental Thermal and Fluid Science, Vol. 10, 40-56.
19. Friedel L.,1979 , “Improved Friction Pressure Drop Correlations for Horizontal and Vertical Two-Phase Pipe Flow”, Proceeding of European Two —Phase Flow Group Meeting, Paper E2. Ispra, Italy.
20. Souza A.L. & Chato J.C. & Wattelet J.P. & Christoffersen B.R., 1993, “Pressure Drop During Two-Phase Flow of Pure Refrigerants and Refrigerants -oil Mixure in Horizontal Smooth Tubes”, ASME HTD-243, Heat Transfer With Alternate Refrigerant, 35~41.
21. Collier J. G., 1981, “Convective Boiling and Condensation”, 2nd ed. New York: McGraw-Hill Book Company.
22. 3M Company,2000 , “Thermophysical Properties Data”, Katoka Japan.
23. Moffat R. J., 1988, “Describing the Uncertainties in Experimental Results”, Experimental Thermal and Fluid Science , 3~17.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文