|
REFERENCES [1] Zakarauskas, P., and Cynader, M. S., “A computational theory of spectral cue localization,” J. Acoust. Soc. Amer., 94, 1323-1331, 1993. [2] Sabine, W. C., “Reverberation,” In Lindsay, R. B., editor, Acoustics: Historical and Philosophical Development. Dowden, Hutchinson, and Ross, Stroudsburg, PA. [3] Schroeder, M. R., “New method of measuring reverberation time,” J. Acoust. Soc. Amer., 37, 409-412, 1965. [4] Begault, D. R., “Perceptual effects of synthetic reverberation on three-dimensional audio systems,” J. Audio Eng. Soc. 40, 895-904, 1992. [5] Schroeder, M. R., “Digital simulation of sound transmission in reverberant spaces,” J. Acoust. Soc. Amer., 47, 424-431, 1970. [6] Moorer, J. A., Chauveau, A., Abbott, C., Eastty, P., and Lawson, J., The 4C Machine. Computer Music Journal, 3, 244-250, 1979. [7] Jot, J. M., Larcher, V., and Warusfel, O., “Digital signal processing issues in the context of binaural and transaural stereophony,” In Proc. Audio Eng. Soc. Conv. Preprint 3980, 1995. [8] Schroeder, M. R., “Natural Sounding Artificial Reverberation,” J. Audio Eng. Soc., 10(3). [9] Stautner, J. and Puckette, M., “Designing multi-channel reverberators,” Computer Music Journal, 6, 52-65. [10] Jot, J. M., Etude et realization d’un spatialisateur de sons par modeles physiques et perceptifs (Design and implementation of a sound spatializer based on physical and perceptual models, in French). PhD thesis, Telecom Paris. [11] Jot J. M., “An analysis/synthesis approach to real-time artificial reverberation,” Proc. IEEE Int. Conf. Acoust., Speech and Signal Proc., vol. 2, pp. 221-224, 1992. [12] Moore, J. A., “The synthesis of complex audio spectra by means of discrete summation formulae,” J. Audio Eng. Soc., vol. 24, pp. 717-727, 1976. [13] Moore, J. A., “About the reverberation business,” Computer Music Journal, vol. 3, pp. 3255-3264, 1979. [14] Lake Technology Ltd., http://www.lake.com.au [15] Gardner, W. G., “Efficient convolution without input-output delay,” J. Audio Eng. Soc., vol. 43, pp. 127-136, Mar. 1995. [16] Bosi, M., “Filter banks in perceptual audio coding,” AES 17th Conference on high-quality audio coding, Sep. 2-5, 1999, Florence, Italy. [17] P. P. Vaidyanathan, “Orthonormal and biorthonormal filter banks as convolvers, and convolutional coding gain,” IEEE Tran. on SP, pp. 2110-2130, June 1993. [18] M. Vetterli, “Running FIR and IIR filtering using multirate filter banks,” IEEE Trans. on ASSP, pp. 730-738, May 1988. [19] C. A. Lanciani, and R. W. Schafer, “Subband-domain filtering of MPEG audio signals,” IEEE Int. Conf. on Acoust., Speech, Signal Proc., 1999, Arizona, USA. [20] J. R. VandeKieft, “Computational Improvements to Linear Convolution With Multi-rate Filtering Methods,” Master thesis, Univ. of Miami, Florida, USA, 1998. [21] P. P. Vaidyanathan, Multirate Systems and Filter banks. Englewood Cliffs, N. J., PTR Prentice Hall, 1993. [22] Y. P. Lin, and P. P. Vaidyanathan, “A Kaiser window approach to the design of prototype filters of cosine modulated filter banks,” IEEE Signal Processing Letters, pp. 132-134, June 1998. [23] Physikalisch-Technische Bundesanstalt, project 1.401: simulation of room acoustics, http://www.ptb.de/en/org/1/14/1401/_index.htm [24] U. Zolzer, Digital Audio Signal Processing. N. Y., John Wiley and Sons, 1997. [25] W. G. Gardner, “A realtime multichannel room simulator,” J. Audio Eng. Soc. Am., 92(A), 2395, 1992. [26] B. S. Chen and Y. M. Cheng, “A structure-specified optimal control design for practical applications: a genetic application,” IEEE trans. on control systems technology, vol. 6, No. 6, Nov. 1998. [27] T. Kozek, T. Roska, and L. O. Chua, “Genetic algorithm for CNN template learning ,” IEEE Trans. Circuits Syst., vol. 40, pp. 392-402, 1993. [28] S. K. Mitra, S. Chakrabarti, and E. Abreu, “Nonuniform discrete Fourier transform and its application in signal processing,” Proc. EUSIPCO, vol. 2, pp. 909-912 (1992). [29] J. M. Youngberg and S. F. Boll, “Constant-Q signal analysis and synthesis,” Proc. ICASSP, pp. 375-378 (1978 April). [30] J. M. Kates, “Constant-Q analysis using the chirp z-transform,” Proc. ICASSP, CH-1379, pp. 314-317 (1978). [31] J. Garas and P. C. W. Sommen, “Real-time convolution and correlation using no-uniform spectral analysis and synthesis,” Proc. Signal Processing Symposium SPS 98, pp. 95-98 (1998 March). [32] J. Garas and P. C. W. Sommen, “Warped linear time invariant systems and their application in audio signal processing,” Proc. ICASSP 99, IEEE International Conference on Acoustics, Speech, and Signal Processing, vol.3, pp. 1521-1524 (1999 March). [33] L. Cohen, Time-frequency analysis, (Englewood Cliffs, NJ, Prentice-Hall, 1995). [34] J. J. Clark, M. R. Palmer, and P. D. Lawrence, “A transformation method for the reconstruction of functions from nonuniformly spaced samples,” IEEE trans. ASSP, vol. 33, pp. 1151-1165 (1985 October). [35] S. Boyd, L. Vandenberghe, and M.Grant, “Efficient convex optimization for engineering design,” Proc. IFAC Symp. Robust Contr. Design. (Rio de Janeiro, Brazil, 1994 Sept.). [36] E. Zwicker and H. Fastl, Psychoacoustics: facts and models. (Berlin Heidelberg, Springer-Verlag, 1999). [37] B. Noble, Applied linear algebra. (Prentice Hall, Englewood Cliffs, NJ, 1969). [38] B. Gardner and K. Martin, “HRTF measurement of a KEMAR dummy-head microphone,” MIT Media Lab Perceptual computing-technical report #280 (1994). [39] J. Chambers, W. Cleveland, B. Kleiner, and P. Tukey, Graphical methods for data analysis. (Belmont: Wadsworth, 1983). [40] T. P. Krauss, L. Shure, J. N. Little, Matlab Signal Processing Toolbox, The Math works, Inc., 1993. [41] A. Grace, Matlab Optimization Toolbox, The Math works, Inc., 1995.
|