跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/05 17:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林家弘
研究生(外文):Chia-Hung, Lin
論文名稱:半導體工業的廢氣與微粒之聯合去除系統
論文名稱(外文):A Combined Waste Gas-Particle Removal System for Semiconductor Industry
指導教授:蔡春進蔡春進引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:84
中文關鍵詞:局部廢氣處理系統文氏洗滌器空氣污染控制設備
外文關鍵詞:local scrubberventuri scrubberair pollution control equipment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:323
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
局部廢氣處理設備內部的填充洗滌器,對於製程機台反應腔中或是在局部廢氣處理設備中氣體氧化後產生之細微粒,去除的效果並不好,造成細微粒排放。本研究結合電熱式局部洗滌設備與高效率文氏洗滌器設計一個聯合氣體-微粒處理系統,利用製程的SiH4氣體產生大量的SiO2微粒,測試聯合氣體-微粒處理系統之除塵效率,與壓降、廢氣量、水量之關係,此外研究中也會測量SiH4氣體的去除效率,氣體的去除效率由FTIR測量,微粒的去除效率則由SMPS和MOUDI為之,微粒的去除效率結果將與Calvert (1972)、Yung (1978)和Slinn (1983)的理論值做比較。最後根據聯合系統的實驗結果設計出新型的局部廢氣處理設備,可以同時有效地去除氣狀及粒狀污染物,研究中也會針對新型的局部廢氣處理設備做氣體及微粒的去除效率測試。
在聯合系統的實驗中以1 %和100 %的矽甲烷氣體進行測試,在電熱式局部廢氣處理設備正常操作條件下(電熱腔溫度850 ℃),氣體的去除效率可大於99 %,若將電熱腔溫度降低至650 ℃,則電熱式局部廢氣處理設備對於1 %的矽甲烷氣體的去除效率會降到91 %,對於100 %的矽甲烷氣體則維持大於99 %的去除效率,此結果可以顯示電熱式局部廢氣處理設備對於矽甲烷氣體有相當良好的去除效果。在微粒去除效率部份,分別使用1 %的矽甲烷氣體0.5、1和1.6 lpm和100 %的矽甲烷氣體1 lpm的流量做測試,在文式管中分別使用三種不同的液氣比,1.17、1.5和1.8 l/m3,進入文式管的總廢氣量為180 l。實驗結果顯示此聯合系統亦可有效去除微粒,去除效率能否提升的關鍵在於微粒是否核凝增長,若微粒沒有核凝增長,文式洗滌器的去除效率在40 %以下,如果微粒先核凝增長再進入文式洗滌器內,則去除效率可以大幅提升,可從未核凝增長的40 %提升至90 %,而且矽甲烷氣體濃度或流量越高,可以產生的微粒濃度越高,去除效率也就越高,以同樣液氣比1.17 l/m3為例,若先經核凝增長,1 %的矽甲烷氣體0.5、1和1.6 lpm所得到的微粒去除效率最高分別約為84 %、96 %和98 %,而使用100 %的矽甲烷氣體1 lpm時更高達99 %;若未經核凝增長,1 %的矽甲烷氣體0.5、1和1.6 lpm所得到的微粒去除效率最高分別約為22 %、23 %和20 %,而使用100 %的矽甲烷氣體1 lpm時也只有20 %,證明核凝增長對微粒去除效果影響甚鉅。最後測試新型的局部廢氣處理設備也得到相同的結果,氣體去除效率可維持在98 %以上若液氣比可以大於1 l/m3,則微粒的去除效果可以大於80%。
三個理論值比較之下,Slinn (1983)的理論值都高於Calvert (1972)和Yung (1978) 的理論值。核凝增長的實驗結果與理論值大致符合,惟在微粒數目濃度較高的情況下會有所差異,僅有Slinn的理論值較為符合,在微粒數目濃度較低的情況下,Calvert和Yung的理論值較為符合,Slinn的理論值會有高估的現象。對於未核凝增長的部份,僅與Calvert的理論值比較,兩者之間的相差不算太大,在粒徑較小的部份誤差會較大,這是因為Calvert並未考慮小微粒會因擴散而被去除。
The packed tower inside a thermal-type local scrubber can''t remove particles generated in the reaction chamber with high efficiency. It will cause the emission of fine particles. The study combines a local scrubber and a high efficiency venturi scrubber to design a combined gas-particle treatment system (System 1). It used process SiH4 gas to produce a large number of SiO2 particles, which were used to test the relationship between the removal efficiency, and pressure drop, waste gas flow rate, and scrubbing water flow rate in the System 1. Particle removal efficiency was measured by a SMPS (Scanning Mobility Particle Size) and MOUDI (Micro-Orifice Uniform Deposit Impactor) while gas abatement efficiency is also measured by means of FTIR (Fourier Transform Infrared spectroemeter). The results are compared with those derived from Calvert’s (1972), Yung’s (1978) and Slinn’s (1983) theories. According to the results of System 1, a commercial unit (ECS2000PB, System) was designed and tested.
1 % and 100 % SiH4 were used to test System 1. When temperature inside the reaction chamber is 850℃, gas abatement efficiency was found to be higher than 99%. If temperature was decreased to 650℃,1 % SiH4 abatement efficiency was decreased to 91 % but 100 % SiH4 abatement efficiency remained over 99%. The results show that the local scrubber can remove silane gas efficiently. As to particle removal efficiency, 1 % SiH4 of 0.5, 1.0, 1.6 lpm flow rate and 1.0 lpm of 100 % SiH4 were used. Total flow rate passing through the venturi tube was 180 lpm and liquid to gas ratio were 1.17, 1.50, 1.80 l/m3, respectively. Experimental results show that the System 1 can have high particle removal efficiency and whether particles grow by heterogeneous nucleation is a key factor. Particle removal efficiency was found to be below 40 % without nucleation and was increased to over 90 % with nucleation. Higher SiH4 flow rate or concentration generated higher particle concentration, which indicates higher removal. Taking the liquid to gas ratio of 1.17 l/m3 for example, maximum particle removal efficiency with nucleation was found to be 84 %, 96 %, 98 % and 99 %, respectively for 1 % SiH4 flow rate of 0.5, 1.0, 1.6 lpm and 1.0 lpm of 100 % SiH4. If without nucleation, maximum removal efficiency is only 22 %, 23 %, 20 % and 20 %, respectively. It indicates nucleation influences particle removal efficiency of the scrubber greatly.
Compared with three theoretical values, Slinn’s value is higher than those derived from Calvert’s and Yung’s equations. Experimental data with nucleation matched the theoretical values except under high particle concentration. If the particle concentration is lower, Calvert’s and Yung’s values matched experimental data better while Slinn’s value underestimated experimental data. As to non-nucleation, efficiency is only compared with Calvert’s theoretical value. The difference between them is not great and there is only greater error in the region of smaller diameter. It is also due to neglect of diffusion of smaller particles in Calvert’s equation.
第一章 言…………………………………………………………………..1
1.1 研究背景……………………………………………………………. 1
1.2 研究目的……………………………………………………. 2
第二章 文獻顧……………………………………………………………..3
2.1 次微米微粒之特性及影響…………………………………...….. 3
2.2 矽甲烷氣體及二氧化矽微粒之特性及影響…………………….....4
2.3 局部廢氣處理設備之特性………………………………………... 5
2.4 文氏洗滌器設計及操作因子…………………………………….. .5
2.4.1 去除效率理論………………………….…………….…………….5
2.4.2 壓力降理論………………………………………………….……..8
2.5微粒成長之理論模式………………….………………………... 11
2.5.1 蒸氣混合…………………………………………………………. 12
2.5.2 微粒核凝成長…………………………………………...……….13
第三章 實驗設備與方法…………………………………………..…… 19
3.1實驗設備………………………………………….....……. 19
3.1.1系統簡介………………………………………………………… 19
3.1.2 矽甲烷氣體及微粒的產生與量測………………………….…… 20
3.1.2.1.矽甲烷氣體及微粒的產生……………………..………. .20
3.1.2.2 氣體濃度及微粒粒徑分佈的量測……………………………. 20
3.1.3 實驗設備的QA/QC……………………………………………. 21
3.2 空白測試…………………………………………………………... 22
3.3去除效率的量測……………………………..……………………… 23
3.3.1文氏洗滌器去除效率的量測…………………………………… 23
3.3.2氣體去除效率的量測…………………………………..………….24
3.4壓力降的量測………………………….…………………………… 24
3.5理論模擬…………………………………………………………….. 24
第四章 結果與討論……………………………………………………….33
4.1 矽甲烷氣體去除效率……………………………………..………. 33
4.2 壓力降測量與理論值比較…………….…………..……………...33
4.3 微粒去除效率的量測…………………………………………......34
4.4 理論模擬…………………………………………………..…...….35
第五章 結論……………………………………………………………. 81
第六章 參考文獻………………………..……………………………….82
[1] 王俞敏,2002, 高效率文氏洗滌器之測試研究,碩士論文,國立交通大學環境工程研究所。
[2] 簡聰智,2000, 去除次微米微粒之文氏洗滌器理論分析,碩士論文,國立交通大學環境工程研究所。
[3] Jaques, P. A. and Kim, C. S., 2000, Measurement of total lung deposition of inhaled ultrafine particles in healthy men and women. Inhal. Toxicol. 12, 715-731
[4] Schwartz, J., Dockery, D. W. and Neas, L. M., 1996, Is daily Mortality Associated Specifically with Fine Particles?, J. Air & Waste Manage. Assoc., 46:927-939
[5] Oberdörster, G., Ferin, J., Gelein, R., Sonderholm, S.C. and Finkelstein, J., $1992, Role of the alveolar macrophage during lung injury: studies with ultrafine particles. Environ. Health Perspect. 97, 193-199
[6] Chow, J. C., Watson, J. G., Lowenthal, D. H., Hackney, R., Magliano, K., Lehrman, D., and Smith, T., 1999, Temporal Variations of PM2.5, PM10 and Gaseous Precursors during the 1995 Integrated Monitoring Study in Central California, J. Air & Waste Manage. Assoc., 49:16-24.
[7] Cass, G. R., Hughes, L. A., Bhave, Prakash, Kleeman, M. J., Allen, J. O., and Salmon, L. G., 2000, The Chemical Composition of Atmospheric Ultrafine Particles, Phil. Trans. R. Soc. Lond., A, 358:2581-2592.
[8] 李崇德、張順欽、吳國榮、陳熙灝, 1998, 空氣品質變化趨勢與細懸浮微粒(PM2.5) 監測現況分析, 第十五屆空氣污染控制技術研討會論文集, pp. 686-693.
[9] 鄭曼婷, 2000, 中部地區懸浮微粒特性及污染來源分析, 國科會/環保署科技研究計畫期末報告, NSC-89-EPA-Z-005-003.
[10] 袁中新、張瑞正、袁菁、張章堂, 1998, 台灣南部地區PM2.5及PM10之時空分佈趨勢探討, 第十五屆空氣污染控制技術研討會論文集, pp. 697-702.
[11] 彭成義、蔡俊宏, 2000, 半導體廢氣處理系統之探討與實例研究, 第八屆氣膠科技研討會論文集, pp. 464-470.
[12] 林紫嵐、周崇光、鄭明威、李崇德,1998, 半導體製程廢氣成份分析及煙道不透光率之研究,1998年氣膠研討會論文集,pp. 450-457,屏東科技大學。
[13] Tsai, C. J., Miao, C. C. and Lu, H. C., 1997, White Smoke Emission from a Semiconductor Manufacturing Plant, Environ. Inter., Vol. 23, No. 4, pp. 489-496.
[14] 張淑婷、蔡春進,半導體工業白煙控制之可行性研究,第十二屆空氣污染控制技術研討會論文集,pp. 456-461,台南市成功大學,1995。
[15] Li, S.-N., Hsu, J.-N., and Leu, G.-H., 2001, An Improved Technique for Evaluation Point-of-use. Abatement System, Semiconductor Fabtech-14th Edition, pp.63-67
[16] Li, S.-N., Hsu, J.-N., Lin, S.-J., Hong, J.-L., and Shih, H.-Y., 2002, Abatement Efficiency Using FTIR Spectrometers. Accepted by Solid-State Technology.
[17] Calvert, S., 1970, Venturi and Other Atomizing Scrubbers Efficiency and Pressure Drop, AICHE J., Vol. 16, pp. 392-396, 1970.
[18] Yung, S. C., Calvert, S., Barbarika, H. F., and Sparks, L. E., 1978, Venturi Scrubber Performance Model, Env. Sci. Tech., Vol. 12, pp. 456-458.
[19] Nukiyama, S., and Tanasawa, Y., 1939, Trans. Soc. Mech. Engrs. (Japan), Vol.5, pp.63-68.
[20] Yung, S. C., Barbarika, H. F., and Calvert, S., 1977, Pressure Loss in Venturi Scruer, J. Air Pollut. Control Assoc., Vol.27, No.4, pp.348-351.
[21] Slinn, W. G. N., 1983, “Precipitation Scavenging” in Atmospheric Sciences and Power Production Research, U.S. Dept. of Energy.
[22] J.A.S. Goncalves, D. Fernandez Alonso, et al., 2000, Evaluation of the Models Available for the Prediction of Pressure Drop in Venturi Scrubber. J. of Hazardous Materials.B81:123-140.
[23] Leith, D., Cooper, D. W., and Rudnick, S. N., 1985, Venturi Scrubbers: Pressure Loss and Regain, Aerosol Science and Technology, 4:239-243.
[24] Calvert, S., Goldschmid, J., Leith, D., and Mehta, D., 1972, Scrubber Handbook NTIS.
[25] Hesketh, H. E., 1974, Atomization and Cloud Behavior in Wet Scrubbers, U.S.-U.S.S.R. Symposium on control of Fine Particulate Emissions, Jan. pp.15-18, 1974.
[26] Boll, R.H., 1973, Ind. Eng. Chem. Fundam, 12,40
[27] Azzopardi, B.J., 1999, Two Phase Flow Modeling and Experimentation, Edizioni ETS, Pisa, Vol. II, pp.701-707.
[28] Schauer, P. J., 1951, Removal of Submicron Aerosol Particles from Moving Gas Stream, Ind. Eng. Chem. 43, pp.1536.
[29] Heidenreich, S., and Ebert, F., 1995, Condensation droplet growth as a preconditioning technique for the separation of submicron particles from gases, J. Chem. Eng. and Processing 34, pp.235-244
[30] Chen, C. C., Shu, H. K., Yang, Y. K., 1993, Nucleation-Assisted Process for the Removal of Fine Aerosol Particles, Ind. & Eng. Chem. Res., 32: (7)1509-1519.
[31] Fuchs, N. A., and Sutugin, A. G., 1971, High dispersed aerosols, Topics in Current Aerosol Research (Part 2), G. M. Hidy and J. R. Brock. Pergamon, New York, pp. 1-200.
[32] Kolb, C. E., Worsnop, D. R., Jayne, J. T., 1998, Davidovits, Comment on Mathematical Models of The Uptake of CIONO2 and Other Gases By Atmospheric Aerosols, J. Aerosol Science Vol.29, No.7, pp.893-897.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top