|
[1] Adcock, J. L., “Curve Fitter for Pole-Zero Analysis, “Hewlett-Packard Journal, pp. 33-36, Jan. 1987. [2] Balas, G. J., J. C. Doyle, Glover, K., Packard, A., and Smith, R., μ-Analysis and Synthesis Toolbox For Use with MATLAB, Terasoft, Inc., 2001. [3] Borghesani, C., Chait, Y., and Yaniv, O., The QFT Frequency Domain Control Design Toolbox For Use with MATLAB, Terasoft, Inc., 2001. [4] Doyle, J. C., K. Glover, P.P. Khargonekar, and B. A. Francis, “State-space solutions to standard H2 and H∞ control problems,” IEEE Trans. Automatic Control, Vol. AC-34, No.8, pp. 831-847, 1989. Also see 1988 American Control Conference, Atlanta, June 1988. [5] Gahinet, P., and P. Apkarian, “A Linear Matrix Inequality Approach to H∞ Control,” Int. J. Robust and Nonlinear Control, Vol. 4, pp. 421-448, 1994. [6] Gahinet, P., Nemirovski, A., Laub, A. J., and Chilali, M., LMI Control Toolbox For Use with MATLAB, Terasoft, Inc., 1995. [7] Horowitz, I. M., Synthesis of Feedback Systems, Academic Press, New York, 1963. [8] Horowitz, I. M., and Sidi, M., “Synthesis of Feedback Systems with Large Plant Ignorance for Prescribed Time-Domain,” Int. J. of Control, Vol. 16, No.2, pp. 287-309, 1972. [9] Horowitz, I. M., Quantitative Feedback Design Theory (QFT), QFT Publishers, Colorado, 1992. [10] Houpis, C. H., and Rasmussen, S. J., Quantitative Feedback Theory Fundamentals and Applications, Marcel Dekker, Inc., New York, 1999. [11] Kuo, B. C., Automatic Control Systems, 7th Edition, Prentice Hall, 1995. [12] Lin, T. C., Wang, C. H., Teng, C. C., and Lee, T. T., “Design of Sampled-Data Systems with Large Plant Uncertainty Using Quantitative Feedback Theory,” Int. J. of Systems Science, Vol. 32, No. 3, pp. 273-285, 2001. [13] Maciejowski, J. M., Multivariable Feedback Design, Addison-Wesley Publishing Company, Massachusetts, 1989. [14] Morris, K. A., Introduction to Feedback Control, Harcourt/Academic Press, Massachusetts, 2001. [15] Sidi, M., “A Combined QFT/H∞ Design Technique for TDOF Uncertain Feedback Systems,” Int. J. Control, Vol. 75, No. 7, pp. 475-489, 2002. [16] Wang, B. C., Synthesis of Multiple Loops Control System, Hsin Jyh Book Company, Taipei, 1994. [17] Yaniv, O., Quantitative Feedback Design of Linear and Nonlinear Control Systems, Kluwer Academic Publishers, Massachusetts, 1999. [18] Zhao, Y., and Jayasuriya, S., “An H∞ Formulation of Quantitative Feedback Theory,” Journal of Dynamic Systems, Measurement, and Control, Vol. 120, pp. 305-313, 1998. [19] Zhou, K., and J. C. Doyle, Essentials of Robust Control, Prentice Hall, Upper Saddle River, New Jersey, 1998. [20] Zhou, K., J. C. Doyle, and K. Glover, Robust and Optimal Control, Prentice Hall, Upper Saddle River, New Jersey, 1998. [21] 楊憲東,葉芳木百;,線性與非線性H∞控制理論, Game Theoretic Approach,全華,台北,1997。
|