跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/19 23:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:馮文俊
研究生(外文):Wen-Chun Feng
論文名稱:微面鏡應用於光學尋軌伺服系統
論文名稱(外文):Micro-mirror for tracking servo in optical storage
指導教授:謝漢萍謝漢萍引用關係
指導教授(外文):Han-Ping Shieh
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:75
中文關鍵詞:尋軌微面鏡微機電伺服控制動態系統分析儀系統鑑別碟片動態測試機
外文關鍵詞:trackingmicro-mirrorMEMSservo controlDSAsystem identificationdynamic tester
相關次數:
  • 被引用被引用:4
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
由於網路與多媒體科技的不斷發展,造成人們對於高儲存容量與速度的需求不斷增加,因此如何提高存取速度與縮小碟機尺寸變成兩個很重要的問題.微機電的元件具有輕薄短小,高運動頻寬等優點,可以達到縮小讀寫頭重量與提高系統存取速度等目的.因此在本論文裡,我利用以微機電(MEMS)技術作出的微致鏡取代傳統讀寫頭裡的音圈馬達來作循軌(tracking)的伺服控制,但因為微致鏡在做循軌運動的時候,會產生光軸的傾斜,造成像差影響訊號的判斷.所以論文的第一部分,便是利用光學軟體討論像差與微致鏡傾斜角度的關係,並且找到系統可容忍的最大傾斜角度,藉此定義循軌運動的範圍.
在論文的第二部分,利用兩種不同的動態特性量測實驗(CCD tester 和 Dynamical system analyzer)觀察微致鏡的暫態特性與動態特性,經由CCD tester的量測,可以驗證系統裡微致鏡的傾斜角度與光點移動關係,並且可求得微致鏡的暫態響應;而利用DSA可以找到微致鏡的頻率響應,並藉著分析微致鏡的頻率響應,可以鑑別出微致鏡的物理模型,以方便設計整個循軌伺服系統的控制器.論文的第三部分便是使用推挽法(Push-Pull)搭配PID控制器來設計循軌系統的伺服控制,在與傳統音圈馬達作循軌結果的比較後,可以發現循軌誤差訊號從80nm縮小至17nm,大幅的提高了系統的循軌精度,也因此提高了系統可容忍的最高轉速.
在未來,將讀寫頭微小化以縮小碟機尺寸和提高存取速度會成為主要的趨勢.因此本論文中,利用微機電的元件來取代並強化傳統讀頭裡應有的功能,相信可以對讀頭未來的發展提供新的方向與觀瞻

Optical data storage industries are continually growing with rapid progress of computer, multimedia, and network markets. In this trend, technologies capable of recording more information thus become increasingly demanded. Since optical heads are a key component of the recording system, developing a high-optical-efficiency and small-sized optical head for high data rate and access speed is thus essential to enable the system more competitive in price and performance.
To achieve a high data transfer rate driver, an improved tracking system with high-bandwidth MEMS mirror was proposed. In DVD-RW system at rotation 500 rpm, the MEMS-based tracking servo was demonstrated with suppressing TES to 17 nm, which is smaller than 80 nm in the conventional servo with voice coil motor (VCM). Therefore, the proposed MEMS tracking system can potentially function in the high-speed pick-up for next-generation optical storage systems.

Abstract……………………………………………………….I
Contents…………………………………………………….. II
Chapter 1
Introduction
1.1 Optical data storage 1
1.2 Position control systems 2
1.3 Tracking actuator in pick-up 3
1.3.1 Data transfer rate 3
1.3.2 Access time 4
1.4 Head miniaturization 5
1.5 Objective of this dissertation 7
1.6 Organization of this dissertation 8
Chapter 2
Micro-mirror tracking system
2.1 Optical focusing/tracking servo 8
2.2 Tracking following literature survey 11
2.3 Introduction to MEMS tracking system 12
2.4 Specification of micro-mirror 13
2.5 Micro mirror tracking system 14
2.5.1 The configuration of optical system 14
2.5.2 Aberration 16
2.6 Summary 19
Chapter 3
Dynamics of micro-mirror
3.1 CCD dynamic measurement system design 20
3.1.1 Architecture of CCD measuring system 20
3.1.2 Driving platform 21
3.1.3 Optical system 23
3.1.4 CCD and driving/processing circuits 24
3.1.5 Computer Interface 27
3-2 Measurement setup 29
3.2.1 Setup of CCD measuring system 29
3.2.2 Alignment of the micro-mirror 31
3.2.3 Verification of micro-mirror’s dynamic features 31
3.3 Frequency response measurement 35
3.3.1 Measurement principle 35
3.3.2 Measurement set-up 36
3.3.3 Results of micro-mirror’s frequency response 37
Chapter 4
System Identification and Controller design
4.1 System Identification 39
4.1.1 Frequency Domain Identification 40
4.1.2 Identification Results 42
4.2 Tracking system 44
4.2.1 Compensator design 45
4.2.2 Tuning of PID Controller 48
4.3 Summary 54
Chapter 5
Tracking system with MEMS mirror
5.1 Implement of tracking system 55
5.1.1 Implementation of PID algorithm in LABVIEW software 56
5.2 Optical tracking experiments with MEMS mirror along 59
5.2.1 Crossing tracks 60
5.2.2 Closed loop tracking system 62
5.2.3 The tracking comparison between mirror and VCM 65
Chapter 6
Conclusion 67
Reference 70

[1] S. M. Mansfield, W. R. Studenmund, G. S. Kino and K. Osata: Opt. Lett. 18, 305 (1993).
[2] A. B. Marchant: Optical recording: a technical overview, Addison-Wesley, Massachusetts (1990).
[3] H. D. Joseph: Focus servo performance optimization for an optical disk data storage device (1990).
[4] M. Masuripur: The Physical Principle of Magneto-optical Recording, Cambridge University Press, New York (1995).
[5] H. Ukita, Y. Katagiri and S. Fujimora: Appl. Opt. 28, 4360 (1989).
[6] S. Yamaguchi, K. Yasukawa, D. Iguchi, K. Sumiya, A. Murakami, H. Goto and K. Ueyanagi: Proc. SPIE 1248, 96 (1990).
[7] W. Odajima, F. Tawa, N. Aoyama, M. HOkari, M. Shibano and S. Hasegawa: ISOM/ODS Technical Digest ThB-3 389 (2002).
[8] R. Katayama, Y. Komatsu and Y. Yamanaka: ODS Technical Digest TuB-1 97 (2001).
[9] J. Y. Kim, S. W. Suh and K. C. Park: ODS Technical Digest TuD-2 136 (2001).
[10] L.Y. Lin, J. L. Shen, S. S. Lee, and M. C. Wu: Opt. Lett. 21, 155 (1996).
[11] G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. vanRosmalen and K.S. Immink: Principles of Optical Disc systems, Adam Hilger Press, Bristol (1985). T. W. McDaniel: Handbook of Magneto-Optical Data Recording, Noyes publications, New Jersey (1996).
[12] T. Teruyuki, S. Masayuki, W. Kanji: High-speed access mechanism for 90mm 1-inch-high optical disk drive, (1993)
[13] S. Tetsuo, K. B. Allen, A. Alan: Interactions between servo loops of an optical disk drive IBM Tokyo Research Laboratory, (1996)
[14] Z. Jinhui, H. Yuhong, S. Steve, W. Messner: High bandwidth Electro-optic scanner for optical data storage, Jpn.J.Appl.Phys. Feb. (2000).
[15]W. Ichiro, I. Yoshiaki, K. Takayuki: Precise track-following control using a micro-electromechanical-system tracking mirror in high-density optical disk drives, J.J. Appl Phys (2003).
[16]http://www.opticalmems.com/, OPTICAL MEMS Company
[17]Y. T. Cheng: The study of laser scanning micro-mirror device for 2D display, June. (2000)
[18] http://www.sony.com/, SONY Corporation of America.
[19] Altera Device Data Book, (2000)
[20] LABVIEW for printer port communication, National Instruments Company.
[21] W. Feei, A. Daniel, F. Gene: A method for verifying measurements and models of linear and nolinear systems, June. (1993).
[22] T.C. Hsia: System identification- least squares methods, Lexington books, (1987)
[23] Lennart Liung: System identification toolbox- for use with MATLAB, The Math works Inc., (1995).
[24] X.P. Hu, T.S. Low, B.M. Chen: Dual stage actuator modeling and control in a CD-ROM drive, IEEE, (1998)
[25] Ken C. Pohlmann: The compact disc handbook, Oxford University Press, (1992)
[26] G.F. Franklin, J.D. Powell, E.N. Abbas: Feedback control of dynamic systems, (1998)
[27] NI PCI-6014 AD/DA card with LABVIEW, National Instruments Company.
[28] G.F. Franklin, J.D. Powell, W. Michael: Digital control of dynamic systems, (1998)
[29] Z. Jinhui, H. Yuhong, S. Steve, W. Messner: High bandwidth Electro-optic scanner for optical data storage, Jpn.J.Appl.Phys. Feb. (2000).
[30] W. Jeroen, D. Jadranko, J.N. Arnold, Rieck Marcel: Fast-access optical drive, Jpn.J.Appl.Phys., Feb. (2000).
[31] T. Suhara, H. Nishihara and J. Koyama: Opt. Commun., 19, 353 (1976).
[32] M. Miler and M. Skalsky: Opt. Commun., 33, 13 (1980).
[33] D. Heitmann and C. Ortiz: IEEE J. Quantum Electron., QE-17, 1257 (1981)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top