跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 08:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林永倫
研究生(外文):Lin Yung-Lun
論文名稱:光子晶體負折射現象研究
論文名稱(外文):Negative Index of Refraction Phenomenon in Photonic Crystal
指導教授:謝文峰謝文峰引用關係
指導教授(外文):Wen-Feng Hsieh
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
中文關鍵詞:光子晶體負折射率
外文關鍵詞:photonic cyrstalnegative refraction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:2
在微波頻段的實驗量測中,我們觀察發現電磁波透射光子晶體稜鏡會有負責射偏折的現像,其偏折可直接以司乃爾定律定義出折射率。此外在研究當中我們並以時域有限差分演算法來進一步驗證負偏折現象。在理論分析當中,發現群折射率與相折射率的乘積值才具有物理意義。藉由k.p理論分析偏折現象時,可以獲知群折射率與相折射率的乘積與微波段實驗負折射偏折結果相謀合。如此一來我們可以利用量測光透射光子晶體的偏折狀態來建構光子能帶結構。並且根據k.p理論,電磁波在光子晶體中的群速度可以定義為準粒子的有效質量與動量的比值且電磁波在光子晶體當中傳播的行為就像具有質量的準粒子。

We have observed the electromagnetic waves undergo negative refraction in a two-dimensional photonic crystal prism in microwave frequency regime. By measuring the refraction angles of EM waves propagating through a PCP, and applying the Snell’s law to the exit interface of PC and air, we deduced the negative refractive indices which are consistent with the simulated results by using the finite-difference time-domain (FDTD) method. We show that only the product of phase index and group index has the physical meaning. The calculated product of phase index and group index derived from the extended k p theory fit reasonably well with the experimental data. Thus, it is possible to reconstruct the photonic band structure from measurement of refraction angles for light propagation through the PC. And, according to the extended k p theory, the group velocity of EM waves in PC can be defined as the ratio of momentum to relativistic effect mass of a quasi-particle. The EM wave propagating in PC behaves like a massive quasi-particle.

Content
Abstract (in Chinese)………………………………………………………ⅰ
Abstract (in English)………………………………………………………ⅱ
Acknowledgements……………………………………………………..…ⅲ
Contents……………………………………………………………………ⅳ
List of Figures………………………………………………………..….…ⅵ
Chapter I Introduction………………………………...…………..…..………1
1-1 Background……………………………………………………….……1
1-2 Motivation………………………………………………………...……2
1-3 Organization of the thesis………………………………………………3
Chapter II Theory and methodology…………………………………4
2-1Introduction………………………………………………………………4
2-1.1 Refraction phenomenon in homogenous medium………………4
2-2.2 Refraction phenomenon in photonic crystal……………………5
2-2 Refractive index in photonic crystal……………………………………10
2-2.1 Phase velocity, Group velocity, and Energy velocity…………10
2-2.2 Calculation of Group Velocity…………………………………12
2-3 Electromagnetic simulation using the FDTD method…………………14
2-3.1 Introductions to the FDTD algorism……………………………14
2-3.2 One dimension free space formulation …………………………15
2-3.3 Simulation in periodic structure ………………………………15
2-4 k p theory ……………………………………………………………20
Chapter III Experiment………………………………………………24
Chapter IV Results and Discussion…………………………………27
4-1 The photonic crystal sample measurement ……………………………27
4-2 The refraction angle measurement ……………………………………28
4-3 The negative refraction index discussed in k p theory and Hellmann-Feynman theory…………………………………………....……31
4-4 The negative refraction phenomenon simulated with the FDTD method……………………………………………………………………37
4-5 The negative refraction phenomenon…………………………42
Chapter Ⅴ Conclusion……………………………………………………44
References …………………………………………………………………46

[1] V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
[2] J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[3] J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
[4] D. R. Smith, W. J. Padilla, D. C. View, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000)
[5] R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[6] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, 10096 (1998)
[7] M. Notomi, Phys. Rev. B 62, 10 696 (2000).
[8] S. Foteinopoulou, E. N. Economou and C. M. Soukoulis, Phys. Rev. Lett. 90, 107402 (2003).
[9] C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, Phys. Rev. Lett. 90, 107401 (2003).
[10] E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[11] S. Kawakami, Electron. Lett. 33, 1260 (1997).
[12] M. Notomi, T. Tamamura, Y. Ohtera, O. Hanaizumi, and S.Kawakami, Phys. Rev. B 61, 7165 (2000).
[13] P. Halevi, A. A. Krokhin, and J. Arriaga, Phys. Rev. Lett. 82, 719(1999).
[14] N. A. Nicorovici, R. C. McPhedran, and L. C. Botten, Phys. Rev. Lett. 75, 1507 (1993).
[15] R. C. McPhedran, N. A. Nicorovici, and L. C. Botten, J. Electron.Waves Appl. 11, 981 (1997).
[16] S.-Y. Lin, V. M. Hietala, L. Wang, and E. D. Jones, Opt. Lett. 21, 1771 (1996).
[17] A. Yariv and P. Yeh, Optical Waves in Crystals ~Wiley, New York, (1984)
[18] J. P. Dowling and C. M. Bowden, J. Mod. Opt. 41, 345 (1994).
[19] P. Yeh: J.Opt. Soc. Am. 69, 742 (1979)
[20] K. Yee, ``Numerical solutions of initial boundary value problems involving Maxwell's equations in isotropic media,'' IEEE Transactions on Antennas and Propagation, vol. AP-14, pp. 302-307, (1966).
[21] J. Adhidjaja and G. Horhmann, ``A Finite-Difference Algorithm for the Transient Electromagnetic Response of a Three-Dimensional Body,'' Geophysics J. Int., vol. 98, pp. 233-242, 1989.
[22] M. Piket-May and A. Taflove, ``Electrodynamics of Visible-Light Interactions with the Vertebrate Retinal Rod,'' Optics Letters, vol. 18, no. 8, pp. 568-570, 1993.
[23] M. Celuch-Marcysiak and W. Gwarek, ``Higher order modeling of media interfaces for enhanced fdtd analysis of microwave circuits,'' in 24th European Microwave Conference, vol. 24, (Cannes, France), pp. 1530-1535, September 1994.
[24] D. Sullivan, D. Borup, and O. Gandhi, ``Use of the Finite-Difference Time-Domain Method in Calculating EM Absorption in Human Tissues,'' IEEE Trans. Biomed. Eng., vol. 34, no. 2, pp. 148-157, 1987.
[25] S. Caorsi, A. Massa, and M. Pastorino, ``Computation of Electromagnetic Scattering by Nonlinear Bounded Dielectric Objects: A FDTD Approach,'' Microwave Opt. Technol. Let, vol. 7, no. 17, pp. 788-790, 1994.
[26] K. Shlager and J. Schneider, ``A selective survey of the finite-difference time-domain literature,'' IEEE Antennas and Propagation Magazine, vol. 37, pp. 39-56, 1995.
[27]J. P. Berenger, A perfectly matcdhed layer for the absorption of electromagnetic waves, J. Comput. Phys., vol. 114, 1994, pp
[28] N. F. Johnson and P. M. Hui, Phys. Rev. B 48, 10118 (1993); N. F. Johnson, P. M. Hui and K. H. Luk, Solid State Commun. 90, 229 (1994).
[29] K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).
[30] S. C Cheng and W. F. Hsieh, Optics in information system, SPIE’s International technical group Newsletters, Aug. (2002); S. C Cheng and W. F. Hsieh, 73, Technical Digest of Optics in computing 2002.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top