跳到主要內容

臺灣博碩士論文加值系統

(44.221.70.232) 您好!臺灣時間:2024/05/29 03:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林建宏
研究生(外文):Jian-Hong Lin
論文名稱:半導體雷射激發摻釹釩酸釓與摻釹釩酸釔被動鎖膜固態雷射之特性比較研究
論文名稱(外文):A comparative study of diode-pumped cw passively mode-locked Nd:GdVO4 and Nd:YVO4 lasers
指導教授:潘犀靈
指導教授(外文):Ci-Ling Pan
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:83
中文關鍵詞:被動鎖膜摻釹釩酸釓摻釹釩酸釔固態雷射
外文關鍵詞:passively mode-lockedNd:GdVO4Nd:YVO4solid state laser
相關次數:
  • 被引用被引用:0
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
本論文在討論並研究及比較Nd:GdVO4 和 Nd:YVO4兩種晶體在二極體激發被動鎖模固態雷射中作為增益介質的輸出特性,在相同Nd離子濃度摻雜條件下,無論在連續波或是鎖模操作下,Nd:GdVO4都具有較高輸出功率、較大輸出轉換效率及較沒有輸出因熱效應造成之飽和現象。在鎖模特性比較上,Nd:GdVO4 也比Nd:YVO4 有較低的連續波鎖模臨界值(2cwth:2.7cwth),而在低功率激發光源下(4.37 W),更展現較短脈衝(19.2ps:21.6ps)及較寬的頻寬(0.21nm:0.16nm)等特性,而在之後的二倍頻穩定度量測結果發現在高功率激發光源下,二倍頻訊號會因激發光源的提高而導致不穩定度跟隨提高,進而導致脈衝寬度變寬的現象,但在9.5 W 高激發光源下,所得到的脈衝寬度(30ps:38ps)與頻寬(0.24nm:0.18nm)結果仍舊以Nd:GdVO4有較佳的輸出特性,而在脈衝啟動時間的實驗結果中得知兩者最短的啟動時間皆落在100us左右,更發現其鬆弛震盪頻率(relaxation oscillation frequency)會隨激發光源的升高而增高的關係與理論預測符合,故歸納從所得到的結果和理論上都顯示具有較大頻寬、螢光散射截面及較佳熱傳導特性的Nd:GdVO4為一在1.06m波段很有潛力的的鎖模增益介質。

We characterize and compare the performance of cw and mode-locking operation between Diode-pumped passively mode-locked Nd:GdVO4 and Nd:YVO4 Lasers with a Saturable Bragg Reflector. With the same Nd ion doping in both gain media, higher output power, larger slope and conversion efficiency, and more unclear saturation due to thermal effect under high pumping condition were demonstrated in the Nd:GdVO4 laser gain medium compared to Nd:YVO4 both in cw and mode-locking operation. Furthermore, in mode-locking operation, lower cw mode-locking threshold (2 cwth:2.7cwth) was characterized. The shorter pulse width (19.2ps:21.6ps) and wider spectral bandwidth (0.21nm:0.16nm) also were demonstrated on low pumping power(4.37 W). After characterization the SHG power fluctuation, we consider that pulse broadening was caused by the instability of SHG power as increasing pumping power. The shorter pulse width (30ps:38ps) and wider spectral bandwidth (0.24 nm:0.18nm) also were observed on high pumping power(9.5 W). In the experiment of buildup dynamics of mode-locking Nd:GdVO4 and Nd:YVO4 lasers. We observed the shortest buildup time was also about 100us and the relaxation oscillation frequency will increasing as increasing pumping power. All the results obtained from Nd:GdVO4, were superior to those of Nd:YVO4, indicating that Nd:GdVO4 could be a promising gain media for Diode-pumped passively mode-locked solid state laser.

Content
Chinese abstract………………………………………………………………………..……..i
English abstract………………………………………………………………………………ii
Acknowledgement……………………………………………………….…………..………iii
Content…………………………………………………………….………………………... iii
Graphic content………………………………………………………………………………V
Chapter I Introduction and Motivation
1.1 Introduction………………………………………………………….…...………1
1.2 Motivation………………………………………………………....…....….……3
1.3 Organization of the thesis.……………….………………………..……...……...4
Chapter II Mode Locking of Lasers: Basic Principles and Mode Locked Mechanisms
2.1 Mode-locking……………..…………….………………………………………..5
2.1.1 Active mode-locking……………………………………………………...8
2.1.2 Passive mode-locking and the structure of SBR………………………….9
2.1.3 The etalon effect in mode-locking laser…………………………………15
2.1.4 Cavity configuration…………………………………………………….17
2.2 Pulse width Measurement………………………………………………………20
2.2.1 The interferometric autocorrelator………………………………………20
2.2.2 The intensity autocorrelator……………………………………………..22
Chapter III The characteristics of laser crystals Nd:GdVO4 and Nd:YVO4
3.1 Introduction………………………………………………………………..……23
3.2 The physical and optical properties of Nd:GdVO4 and Nd:YVO4 crystal……...23
3.3 Fluorescence spectra of Nd:GdVO4 and Nd:YVO4 crystal…………………….24
3.4 CW operation of Nd:GdVO4 and Nd:YVO4 laser……………..…….………….26
3.5 Discussion and conclusion………………………………………...……………29
Chapter IV The characterization of diode-pumped passively mode-locked Nd:GdVO4 and Nd:YVO4solid-state laser
4.1 Introduction……………………………………………………………………….30
4.2 The etalon effect in mode-locking Nd:GdVO4 laser……………………………...30
4.3 The effect of using cavity mirror…………………………………………………31
4.4 B-angle passively mode-locked Nd:GdVO4 and Nd:YdVO4 solid-state laser…...33
4.3.1 Comparison of mode-locking Nd:GdVO4 and Nd:YVO4 solid-state laser in low pumping power……………………………………………..…………33
4.3.2 Comparison of mode-locking of Nd:GdVO4 and Nd:YVO4 solid-state laser in high pumping power…………………………………………………….34
4.3.3 The power fluctuation of Nd:GdVO4 mode-locking and cw operation……36
4.3.4 Buildup dynamics of mode-locking Nd:GdVO4 and Nd:YVO4 laser…...…37
4.4 Discussion and conclusion………………………………………………..………38
Chapter V Conclusions and future works
5.1 Conclusions…………………………………….………………………..……..…40
5.2 Future works……………………………………….…………………..…………41
Reference.............................................................................................................76
Appendix..............................................................................................................79

References
[1]. A. I. Zagmennyi, V. G. Ostromov, I. A. Shcherbarkov, T. Jensen, J.-P. Meyn, and G. Huber, “The Nd:GdVO4 crystal: a new material for diode pumped lasers,” Sov. J. Quantum Electron. 22, 1071-1072 (1992)
[2]. S.C. Tidwell, J.F. Seamans, M.S. Bowers, A.K. Cousins, “Scaling CW Diode-End-Pumped Nd:YAG Lasers to High Average Powers” IEEE J. Quantum Electron. 28, 997-1009 (1992)
[3]. W.A. Clarkson, D.C. Hanna, ”Efficient Nd:YAG laser end pumped by a 20-W diode-laser bar” Opt. Lett. 21, 869-871 (1996)
[4]. W.A. Clarkson, P.J. Hardman, D.C. Hanna, “High-power diode-bar end-pumped Nd:YLF laser at 1.053 mm” Opt. Lett. 23, 1363-1365 (1998)
[5]. Ursula Keller, Kurt J. Weingarten, Franz X. K¨artner, Daniel Kopf, Bernd Braun, sabella D. Jung, Regula Fluck, Clemens H¨onninger, Nicolai Matuschek, and Juerg Aus der Au, “Semiconductor Saturable Absorber Mirrors (SESAM’s) for Femtosecond to Nanosecond Pulse Generation in Solid-State Lasers” IEEE J. Sel.Topics Quantum Electron. 2, 435-453 (1996)
[6]. Hayduk, M.J.; Johns, S.T.; Krol, M.F.; Pollock, C.R.; Leavitt, R.P., “Self-starting passively mode-locked tunable femtosecond Cr4+:YAG laser using a saturable absorber mirror” Optics Comm.,137, 55-58 (1997)
[7]. S. Tsuda, Wayne H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham,” Mode-Locking Ultrafast Solid-State Lasers with Saturable Bragg Reflectors” IEEE Sel. Topics Quantum Electron. 2, 454-464 (1996).
[8]. Jia-Min Shieh, T. C. Huang, K. F. Huang, Chi-Luen Wang, and Ci-Ling Pan, “Broadly tunable self-starting passively mode-locked Ti: Sapphire laser with triple-strained quantum-well saturable Bragg reflector” Optics Comm. 156, 53 -57 (1998)
[9]. D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, T. Tschudi, “Semiconductor saturable-absorber mirror-assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime,” Opt. Lett. 24, 631-633 (1999)
[10]. G. J. Spuhler, T. Sudmeyer, R. Paschotta, M. Moser, K. J. Weingarten and U. Keller, “Passively mode-locked high-power Nd:YAG lasers with multiple laser heads,” Appl. Phys. B 71, 19-25 (2000)
[11]. D. Burns, M. Hetterich, A. I. Ferguson, E. Bente, M. D. Dawson, J. I. Davies and S. W. Bland, “High-average-power (>20-W) Nd:YVO4 lasers mode locked by strain-compensated saturable Bragg reflectors” J. Opt. Soc. Am. B 17, 919-926 (2000)
[12]. Y. F. Chen, S. W. Tsai, Y. P. Lan, S. C. Wang and K. F. Huang, “Diode-end-pumped passively mode-locked high-power Nd:YVO4 laser with a relaxed saturable Bragg
ref lector”, Opt. Lett. 26, 199-201 (2001)
[13]. Ulrich Roth and Jung E. Balmer, “Neodymium:YLF lasers at 1053 nm passively mode locked with a saturable Bragg reflector”, Appl. Opt. 41, 459-463 (2002)
[14]. A. Major, N. Langford, T. Graf, D. Burns, A. I. Ferguson, “Diode-pumped passively mode-locked Nd:KGd(WO4)2 laser with 1-W average output power”, Opt. Lett. 27, 1478-1480 (2002)
[15]. J. H. Liu, C. Q. Wang, C. L. Du, L. Zhu, H. Z. Zhang, X. L. Meng, J. Y. Wang, Z. S. Shao and M. H. Jiang, “Hogh-power actively Q-switched Nd:GdVO4 laser end-pumped by a fiber-coupled diode-laser array”, Optics Comm. 188, 155-162 (2001)
[16]. A. Q. Wang, Y. T. Chow, L. Reekie, W. A. Gambling, H. J. Zhang, L. Zhu, X. L. Meng, “A comparative study of the laser performance of diode-laser-pumped Nd:GdVO4 and Nd:YVO4 crystals”, Appl. Phys. B 70, 769-772 (2000)chapter two
[17]. Amnon Yariv, “Optical Electronics in Modern Communications “chapter six ,1997
[18]. Ultrashort laser pulses and applications edited by W. Kaiser (Springer-Verlag, Berlin,1988)
[19]. Yariv,A.,”Internal modulation in multimode laser oscillators, J.Appl.Phys.36:388,1965
[20]. DiDomenico, M., Jr.,”Small signal analysis of internal modulation of Lasers,” J.Appl. Phys.36:3870 1964
[21]. Femtosecond Laser Pulses, edited by Claude Rulliere (Springer-Verlag, Berlin,1998)
[22]. Nonlinear Optics in Semiconductors II,edied by R.K. Willardson (1999)
[23]. F.X. Dartner, L. R. Brovelli, D.Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” J. Opt. Soc. Am. B 14, 2716-2722(1997)
[24]. H. A. Haus, “Parameter ranges for cw passive mode-locking,”IEEE J. Quantum Electron. 12, 169-176(1976)
[25]. Hung Dau Hsieh, the thesis of mater ( Institute of Electrophysics National Chiao Tung University), (2002).
[26]. Laser Electronics edited by Joseph T. Verdeyen,1981,chpa.5
[27]. Optical electronics in modern communication edited Amnon Yariv, (1991)
Chapter three
[28]. David C. Brown, Richard Nelson,and Larry Billings, "Efficient cw end-pumped,end-cooled Nd:YVO4 diode-pumped laser", Appl. Opt. 36, 8611-8613 (1997)
[29]. Chr. P. Wyss, W. Luthy, H. P. Weber, V. IU. Vlasov, Yu. D. Zavastsev, P. A. Studenikin, A. I. Zagumenny and I. A. Shcherbakov, “Performance of a diode-pumped 5W Nd3+:GdVO4 microchip laser at 1:06 m”, Appl. Phys. B 68, 659-661 (1999)
[30]. Huai-Dong Jiang, Hsui-Jin Zhzng et. Al.,” Optical and laser properties of Nd:GdVO4 crystal”, Optics communications, 198, p447(2001)
[31]. L.Fornasiero et.al., Appl. Phy. B, 67, pp549-553(1998)
[32]. W. J. Tomlinson, R.H. Stolen, and C. V. Shank, J. Opt. Soc. Am. B1, 139(1984)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top