|
1. Vieille, C. & Zeikus, G. J. Hyperthermophilic Enzymes: Sources, Uses, and Molecular Mechanisms for Thermostability. Microbiol. Mol. Biol. Rev. 65, 1-43 (2001). 2. Stetter, K. O. Hyperthermophiles in the history of life. Ciba Found. Symp. 202, 1-10 (1996). 3. Blochl, E. et al. Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 degrees C. Extremophiles 1, 14-21 (1997). 4. Stetter, K. O. Hyperthermophilic procaryotes. FEMS Microbiol. Rev. 18, 149-158 (1996). 5. Vieille, C., Burdette, D. S. & Zeikus, G. J. Thermozymes. Biotechnol. Annu. Rev. 2, 1-83 (1996). 6. Perutz, M. F. & Raidt, H. Stereochemical basis of heat stability in bacterial ferredoxins and in haemoglobin A2. Nature 255, 5505 (1975). 7. Argos, P. et al. Thermal stability and protein structure. Biochemistry 18, 5698-5703 (1979). 8. Matsumura, M., Signor, G. & Matthews, B. W. Substantial increase of protein stability by multiple disulphide bonds. Nature 342, 291-293 (1989). 9. Vogt, G., Woell, S. & Argos, P. Protein thermal stability, hydrogen bonds, and ion pairs. J. Mol. Biol. 269, 631-643 (1977). 10. Perutz, M. F. Electrostatic effects in proteins. Science 201, 1187-1191 (1978). 11. Thompson, M. J. & Eisenberg, D. Transproteomic evidence of a loop-deletion mechanism for enhancing protein thermostability. J. Mol. Biol. 290, 595-604 (1999). 12. Jaenicke, R. & Bohm, G. The stability of proteins in extreme environments. Curr. Opin. Struct. Biol. 8, 738-748 (1998). 13. Schmidt-Dannert, C. & Arnold, F. H. Directed evolution of industrial enzymes. Trends Biotechnol. 17, 135-136 (1999). 14. Haney, P. J. et al. Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species. Proc. Natl. Acad. Sci. USA 96, 3578-3583 (1999). 15. McDonald, J. H., Grasso, A. M. & Rejto, L. K. Patterns of temperature adaptation in proteins from Methanococcus and Bacillus. Mol. Biol. Evol. 16, 1785-1790 (1999). 16. Chakravarty, S. & Varadarajan, R. Elucidation of factors responsible for enhanced thermal stability of proteins: a structural genomics based study. Biochemistry 41, 8152-8161 (2002). 17. Davies, G. J., Gamblin, S. J., Littlechild, J. A. & Watson, H. C. The structure of a thermally stable 3-phosphoglycerate kinase and a comparison with its mesophilic equivalent. Proteins: Struct. Funct. Genet. 15, 283-289 (1993). 18. Wallon, G. et al. Crystal structures of Escherichia coli and Salmonella typhimurium 3-isopropylmalate dehydrogenase and comparison with their thermophilic counterpart from Thermus thermophilus. J. Mol. Biol. 266, 1016-1031 (1997). 19. Szilagyi, A. & Zavodszky, P. Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure Fold Des. 8, 493-504 (2000). 20. Kumar, S., Tsai, C. J. & Nussinov, R. Factors enhancing protein thermostability. Protein Engineering 13, 179-191 (2000). 21. Haney, P. J., Stees, M. & Konisky, J. Analysis of thermal stabilizing interactions in mesophilic and thermophilic adenylate kinases from the genus Methanococcus. J. Biol. Chem. 274, 28453-28458 (1999). 22. Lynn, D. J., Singer, G. A. & Hickey, D. A. Synonymous codon usage is subject to selection in thermophilic bacteria. Nucleic Acids Res. 30, 4272-4277 (2002). 23. Fukuchi, S. & Nishikawa, K. Protein surface amino acid compositions distinctively differ between thermophilic and mesophilic bacteria. J. Mol. Biol. 309, 835-843 (2001). 24. Cambillau, C. & Claverie, J. M. Structural and Genomic Correlates of Hyperthermostability. J. Biol. Chem. 275, 32383-32386 (2000). 25. Chakravarty, S. & Varadarajan, R. Elucidation of determinants of protein stability through genome sequence analysis. FEBS Lett. 470, 65-69 (2000). 26. Kreil, D. P. & Ouzounis, C. A. Identification of thermophilic species by the amino acid compositions deduced from their genomes. Nucleic Acids Res. 29, 1608-1615 (2001). 27. Riley, M. Functions of the gene products of Escherichia coli. Microbiol. Rev. 57, 862-952 (1993). 28. Pearson, W. R. & Lipman, D. J. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85, 2444-2448 (1988). 29. Frishman, D. & Argos, P. Knowledge-based secondary structure assignment. Proteins: Struct. Funct. Genet. 23, 566-579 (1995). 30. Chou, K. C. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins: Struct. Funct. Genet. 43, 246-255 (2001). 31. Vapnik, V. The Nature of Statistical Learning Theory (Springer, New York, 1995). 32. Ding, C. H. Q. & Dubchak, I. Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics 17, 349-358 (2001). 33. Brown, M. P. S. et al. Knowledge-based analysis of microarray gene expression data by using Support Vector Machine. Proc Natl Acad Sci U.S.A. 97 (2000). 34. Jaakkola, T., Diekhans, M. & Haussler, D. Using the Fisher kernel method to detect remote protein homologies. ISMB, 149-158 (1999). 35. Hua, S. & Sun, Z. A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach. J. Mol. Biol. 308, 397-407 (2001). 36. Chang, C. C. & Lin, C. J. LIBSVM: a library for support vector machine., Software available from http://www.csie.ntu.edu.tw/~cjlin/libsvm. (2001). 37. Hogg, R. V. & Craig, A. T. Introduction to Mathematical Statistics, 3rd ed. (Macmillan, Toronto, Canada, 1970). 38. Mood, A. M., Graybill, F. A. & Boes, D. C. Introduction to the Theory of Statistics, 3rd ed. (McGraw-Hill, New York, 1974). 39. Snedecor, G. W. & Cochran, W. G. Statistical Methods, 7th ed. (Iowa State University Press, Ames, Iowa, 1980). 40. Kuzma, J. W. Basic Statistics For Health Science, 3rd ed. (McGraw-Hill, 1998). 41. Russell, R. J., Ferguson, J. M., Hough, D. W., Danson, M. J. & Taylor, G. L. The crystal structure of citrate synthase from the hyperthermophilic archaeon pyrococcus furiosus at 1.9 A resolution,. Biochemistry 36, 9983-9994 (1997). 42. Wright, H. T. Nonenzymatic deamidation of asparaginyl and glutaminyl residues in proteins. Crit Rev Biochem Mol Biol. 26, 1-52 (1991). 43. Walker, J. E., Wonacott, A. J. & Harris, J. I. Heat stability of a tetrameric enzyme, D-glyceraldehyde-3-phosphate dehydrogenase. Eur. J. Biochem. 108, 581-586 (1980). 44. Menendez-Arias, L. & Argos, P. Engineering protein thermal stability. Sequence statistics point to residue substitutions in alpha-helices. J. Mol. Biol. 206, 397-406 (1989). 45. Vogt, G., Woell, S. & Argos, P. Protein thermal stability, hydrogen bonds, and ion pairs. J. Mol. Biol. 269, 631-643 (1997). 46. Haney, P., Konisky, J., Koretke, K. K., Luthey-Schulten, Z. & Wolynes, P. G. Structural basis for thermostability and identification of potential active site residues for adenylate kinases from the archaeal genus Methanococcus. Proteins 28, 117-130 (1997). 47. Dill, K. A. Dominant forces in protein folding. Biochemistry 29, 7133-7155 (1990). 48. Kotsuka, T., Akanuma, S., Tomuro, M., Yamagishi, A. & Oshima, T. Further stabilization of 3-isopropylmalate dehydrogenase of an extreme thermophile, Thermus thermophilus, by a suppressor mutation method. J. Bacteriol. 178, 723-727 (1996). 49. Woese, C. R. & Olsen, G. J. Archaebacterial phylogeny: perspectives on the urkingdoms. Syst. Appl. Microbiol. 7, 161-177 (1986).
|