跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/13 14:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇航申
研究生(外文):Hang-Shen Su
論文名稱:蛋白質熱穩定性之研究
論文名稱(外文):The Study of Thermostability of Proteins
指導教授:黃鎮剛
指導教授(外文):Jenn-Kang Hwang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:生化工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
中文關鍵詞:酵素熱穩定性預測
外文關鍵詞:thermostabilityprediction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:294
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
熱穩定酵素在工業以及分子生物實驗中都扮演了極為重要的角色,其在高溫環境下作用的機制,更是研究者急欲解開的奧秘。傳統的研究侷限於以單一點突變來觀察蛋白質的熱穩定性,而對結構的研究以及電腦模擬軟體的開發則更進一步輔助實驗的進行;近年來更有研究學者以直接演化(direct evolution)的方式來加快研究的速度。然而,這些方法還是需要大量的時間以及人力來進行。
隨著基因體計畫的發展,包括嗜高溫微生物在內的許多生物基因已經被完整的定序,這也使得以統計為基礎的研究有足夠數量的資料來源,希望能歸納出影響酵素熱穩定性的關鍵機制及通則。這類研究大致可分為三類,一是整合了序列及結構的資料,透過理論及統計相關的分析來獲得熱穩定性與結構關係的資訊;部分研究是藉由比較同源的高低溫蛋白質作胺基酸偏好的統計;第三類的研究則是對高低溫物種的整個基因體作統計或是預測。
本論文共蒐集了4428個蛋白質序列,並依據蛋白質的功能分類,以支持向量機(support vector machine, SVM)為預測工具,以各種不同的轉譯法 — n-peptide composition測試,結果對蛋白質熱穩定性預測率可達95%以上,甚至99.6% (預測DNA polymerase)。我們也計算了各種n-peptide composition在高低溫酵素間的平均差,以t-test來檢測顯著性。與單一胺基酸組成的分部圖作比較,我們可以更為清楚的觀察到不同種類酵素之間的差異。
本研究提供了一個利用支持向量機快速準確預測蛋白質熱穩定性的方法;也從不同性質的胺基酸組成統計發現高低溫酵素之間小片段胺基酸的差異。相信這些結果能為蛋白質熱穩定性的研究及預測帶來有價值的參考資訊。

The secret of thermophiles living under (extreme) high temperature is an interesting topic for scientists to uncover. Natural or artificial thermostable proteins are quite important in molecular biological and commercial application. However, it is still a challenge to increase the thermostability of proteins by traditional molecular biological engineering. Thus, computational methods may be helpful to analyze and identify the key parts of protein sequences that related to thermostability. We tried to classify the thermostability of proteins using the Support Vector Machine (SVM) with sequence information. In this study, our results show that SVM coupled with suitable global sequence-code schemes can assist the precise prediction of enzymes. Moreover, we have obtained encouraging results from our statistics that may reveal factors that influence thermostability from sequence information. Our approach should be useful in the study and prediction of protein thermostability.

Table of Contents
Chinese Abstract i
English Abstract ii
Acknowledgement iii
Introduction 1
Materials and Methods 4
Data sets 4
Sequence Alignment 4
Secondary Structure Prediction 4
Input Coding Schemes 5
SVM Training and Testing Procedure 6
Measuring Performance 6
Statistic Analysis of Sequence Composition 7
Results 8
Sequence Alignment 8
Analysis of Amino Acid Composition 8
Prediction of thermostability of proteins 9
Statistic significance of SVM codes from protein sequences 13
Discussion 17
References 21
Tables 27
Figures 47

1. Vieille, C. & Zeikus, G. J. Hyperthermophilic Enzymes: Sources, Uses, and Molecular Mechanisms for Thermostability. Microbiol. Mol. Biol. Rev. 65, 1-43 (2001).
2. Stetter, K. O. Hyperthermophiles in the history of life. Ciba Found. Symp. 202, 1-10 (1996).
3. Blochl, E. et al. Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 degrees C. Extremophiles 1, 14-21 (1997).
4. Stetter, K. O. Hyperthermophilic procaryotes. FEMS Microbiol. Rev. 18, 149-158 (1996).
5. Vieille, C., Burdette, D. S. & Zeikus, G. J. Thermozymes. Biotechnol. Annu. Rev. 2, 1-83 (1996).
6. Perutz, M. F. & Raidt, H. Stereochemical basis of heat stability in bacterial ferredoxins and in haemoglobin A2. Nature 255, 5505 (1975).
7. Argos, P. et al. Thermal stability and protein structure. Biochemistry 18, 5698-5703 (1979).
8. Matsumura, M., Signor, G. & Matthews, B. W. Substantial increase of protein stability by multiple disulphide bonds. Nature 342, 291-293 (1989).
9. Vogt, G., Woell, S. & Argos, P. Protein thermal stability, hydrogen bonds, and ion pairs. J. Mol. Biol. 269, 631-643 (1977).
10. Perutz, M. F. Electrostatic effects in proteins. Science 201, 1187-1191 (1978).
11. Thompson, M. J. & Eisenberg, D. Transproteomic evidence of a loop-deletion mechanism for enhancing protein thermostability. J. Mol. Biol. 290, 595-604 (1999).
12. Jaenicke, R. & Bohm, G. The stability of proteins in extreme environments. Curr. Opin. Struct. Biol. 8, 738-748 (1998).
13. Schmidt-Dannert, C. & Arnold, F. H. Directed evolution of industrial enzymes. Trends Biotechnol. 17, 135-136 (1999).
14. Haney, P. J. et al. Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species. Proc. Natl. Acad. Sci. USA 96, 3578-3583 (1999).
15. McDonald, J. H., Grasso, A. M. & Rejto, L. K. Patterns of temperature adaptation in proteins from Methanococcus and Bacillus. Mol. Biol. Evol. 16, 1785-1790 (1999).
16. Chakravarty, S. & Varadarajan, R. Elucidation of factors responsible for enhanced thermal stability of proteins: a structural genomics based study. Biochemistry 41, 8152-8161 (2002).
17. Davies, G. J., Gamblin, S. J., Littlechild, J. A. & Watson, H. C. The structure of a thermally stable 3-phosphoglycerate kinase and a comparison with its mesophilic equivalent. Proteins: Struct. Funct. Genet. 15, 283-289 (1993).
18. Wallon, G. et al. Crystal structures of Escherichia coli and Salmonella typhimurium 3-isopropylmalate dehydrogenase and comparison with their thermophilic counterpart from Thermus thermophilus. J. Mol. Biol. 266, 1016-1031 (1997).
19. Szilagyi, A. & Zavodszky, P. Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure Fold Des. 8, 493-504 (2000).
20. Kumar, S., Tsai, C. J. & Nussinov, R. Factors enhancing protein thermostability. Protein Engineering 13, 179-191 (2000).
21. Haney, P. J., Stees, M. & Konisky, J. Analysis of thermal stabilizing interactions in mesophilic and thermophilic adenylate kinases from the genus Methanococcus. J. Biol. Chem. 274, 28453-28458 (1999).
22. Lynn, D. J., Singer, G. A. & Hickey, D. A. Synonymous codon usage is subject to selection in thermophilic bacteria. Nucleic Acids Res. 30, 4272-4277 (2002).
23. Fukuchi, S. & Nishikawa, K. Protein surface amino acid compositions distinctively differ between thermophilic and mesophilic bacteria. J. Mol. Biol. 309, 835-843 (2001).
24. Cambillau, C. & Claverie, J. M. Structural and Genomic Correlates of Hyperthermostability. J. Biol. Chem. 275, 32383-32386 (2000).
25. Chakravarty, S. & Varadarajan, R. Elucidation of determinants of protein stability through genome sequence analysis. FEBS Lett. 470, 65-69 (2000).
26. Kreil, D. P. & Ouzounis, C. A. Identification of thermophilic species by the amino acid compositions deduced from their genomes. Nucleic Acids Res. 29, 1608-1615 (2001).
27. Riley, M. Functions of the gene products of Escherichia coli. Microbiol. Rev. 57, 862-952 (1993).
28. Pearson, W. R. & Lipman, D. J. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85, 2444-2448 (1988).
29. Frishman, D. & Argos, P. Knowledge-based secondary structure assignment. Proteins: Struct. Funct. Genet. 23, 566-579 (1995).
30. Chou, K. C. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins: Struct. Funct. Genet. 43, 246-255 (2001).
31. Vapnik, V. The Nature of Statistical Learning Theory (Springer, New York, 1995).
32. Ding, C. H. Q. & Dubchak, I. Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics 17, 349-358 (2001).
33. Brown, M. P. S. et al. Knowledge-based analysis of microarray gene expression data by using Support Vector Machine. Proc Natl Acad Sci U.S.A. 97 (2000).
34. Jaakkola, T., Diekhans, M. & Haussler, D. Using the Fisher kernel method to detect remote protein homologies. ISMB, 149-158 (1999).
35. Hua, S. & Sun, Z. A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach. J. Mol. Biol. 308, 397-407 (2001).
36. Chang, C. C. & Lin, C. J. LIBSVM: a library for support vector machine., Software available from http://www.csie.ntu.edu.tw/~cjlin/libsvm. (2001).
37. Hogg, R. V. & Craig, A. T. Introduction to Mathematical Statistics, 3rd ed. (Macmillan, Toronto, Canada, 1970).
38. Mood, A. M., Graybill, F. A. & Boes, D. C. Introduction to the Theory of Statistics, 3rd ed. (McGraw-Hill, New York, 1974).
39. Snedecor, G. W. & Cochran, W. G. Statistical Methods, 7th ed. (Iowa State University Press, Ames, Iowa, 1980).
40. Kuzma, J. W. Basic Statistics For Health Science, 3rd ed. (McGraw-Hill, 1998).
41. Russell, R. J., Ferguson, J. M., Hough, D. W., Danson, M. J. & Taylor, G. L. The crystal structure of citrate synthase from the hyperthermophilic archaeon pyrococcus furiosus at 1.9 A resolution,. Biochemistry 36, 9983-9994 (1997).
42. Wright, H. T. Nonenzymatic deamidation of asparaginyl and glutaminyl residues in proteins. Crit Rev Biochem Mol Biol. 26, 1-52 (1991).
43. Walker, J. E., Wonacott, A. J. & Harris, J. I. Heat stability of a tetrameric enzyme, D-glyceraldehyde-3-phosphate dehydrogenase. Eur. J. Biochem. 108, 581-586 (1980).
44. Menendez-Arias, L. & Argos, P. Engineering protein thermal stability. Sequence statistics point to residue substitutions in alpha-helices. J. Mol. Biol. 206, 397-406 (1989).
45. Vogt, G., Woell, S. & Argos, P. Protein thermal stability, hydrogen bonds, and ion pairs. J. Mol. Biol. 269, 631-643 (1997).
46. Haney, P., Konisky, J., Koretke, K. K., Luthey-Schulten, Z. & Wolynes, P. G. Structural basis for thermostability and identification of potential active site residues for adenylate kinases from the archaeal genus Methanococcus. Proteins 28, 117-130 (1997).
47. Dill, K. A. Dominant forces in protein folding. Biochemistry 29, 7133-7155 (1990).
48. Kotsuka, T., Akanuma, S., Tomuro, M., Yamagishi, A. & Oshima, T. Further stabilization of 3-isopropylmalate dehydrogenase of an extreme thermophile, Thermus thermophilus, by a suppressor mutation method. J. Bacteriol. 178, 723-727 (1996).
49. Woese, C. R. & Olsen, G. J. Archaebacterial phylogeny: perspectives on the urkingdoms. Syst. Appl. Microbiol. 7, 161-177 (1986).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top