1.Stanton, T.E., “Influence of cement and aggregate on concrete expansion”, Engineering News-Record, 124, p. 59 (1940).
2.李釗、饒正、張道光、陳桂清,「花蓮港區混凝土構造物鹼質與粒料反應之調查研究」,台灣省交通處港灣技術研究所 (1980)。3.柯正龍,「台中、基隆及蘇澳港港區混凝土構造物鹼質與粒料反應調查研究」,碩士論文,國立中央大學土木工程研究所,中壢 (1999)。4.陳仁達,「花東地區鹼-粒料反應研究及防治方法」,碩士論文,國立中央大學土木工程研究所,中壢 (1999)。5.王淑慧,「台灣地區岩石之鹼─粒料反應潛能研究」,碩士論文,國立中央大學土木工程研究所,中壢 (1999)。6.許書王,「台灣地區鹼質與粒料反應抑制策略之研究」,博士論文,國立中央大學土木工程研究所,中壢 (1999)。7.巫柏蕙,「港灣混凝土構造物鹼質與粒料反應檢測方法評估研究」,碩士論文,國立中央大學土木工程研究所,中壢 (2000)。8.李釗、許書王,「高雄港區混凝土構造物鹼質與粒料反應調查與潛勢分析研究」,交通部運輸研究所港灣技術研究中心期末報告 (2000)。
9.Monteiro, P.J.M. etc., “Influence of Mineral admixtures on the alkali-aggregate reaction”, Cement and Concrete Research, Vol. 27, No. 12. pp. 1899-1997 (1997).
10.Dent Glasser, L.S. and Kataoka, N., “The chemistry of alkali-aggregate reaction”, Cement and Concrete Research,” Vol. 11, pp. 1-9 (1981).
11.Gillott, J.E., “Alkali-aggregate reaction in concrete”, Engineering Geology, Vol.9, pp. 303-326, (1975).
12.Hobbs, D.W., “Expansion of concrete due to alkali-silica reaction”, The Structural Engineer, Cement, Concrete, and Aggregate, England, (1984).
13.Young, J.F., and Mindess, S., “Concrete”, Prentice, INC. Englewood Cliffs, New Jersey, p. 140-148.
14.Young, J.F., and Mindess, S., “Concrete”, Prentice, INC. Englewood Cliffs, New Jersey, p. 541-542.
15.McCoy, W.J. and A.G. Caldwell. “New approach to inhibiting alkali-aggregate expansion”, Journal of the American Concrete Institute. Vol. 22, pp. 693-706 (1951).
16.SHRP-C-343, “Eliminating or minimizing alkali-silica reactivity”, Strategic Highway Research Program, (1993).
17.Lawrence M. and Vivian H.E. “The reactions of various alkalis with silica”, Australian Journal of Applied Science, Vol. 12, pp. 96-103, (1961).
18.Kishitani, K. et al. “Series of durability in concrete structures, alkali aggregate reaction”, Gihodo Shuppan Co., Ltd, pp. 66-68, (1986).
19.Ong, S. “Study of effects of LiOH, NaOH, and KOH on alkali silica reaction”, M.S.C.E. thesis, School of Civil Engineering, Purdue University, (1990).
20.Stark D.C. “Lithium salt admixtures — an alternative method to prevent expanxive alkali-silica reactivity”, 9th International Conference on Alkali-Aggregate Reaction, London, pp.1017-1025, (1992).
21.Bian Qinghan etc. “Preliminary study of effect of LINO2 on expansion of mortars subjected to alkali-silica reaction”, Cement and Concrete Research, Vol. 25, No. 8, pp. 1647-1654, (1995).
22.Lumley J.S. “ASR suppression by lithium compounds”, Cement and Concrete Research, Vol. 27, No. 2, pp. 235-244, (1997).
23.Diamond S. “Unique response of LiNO3 as an alkali silica reaction-preventive admixture”, Cement and Concrete Research Vol. 29, pp. 1271-1275, (1999).
24.Sakaguchi, Y., Takakura, M., and Kitagawa, A., “The inhibiting effect of lithium compounds on alkali-silica reaction,” Proceeding of the 8th International Conference on Alkali-Aggregate Reaction, Kyoto, pp.229-234 (1989).
25.Stokes D.B. “Development of a lithium-based material for decreasing ASR-induced expansi on in hardened concrete”, 11th International Conference on Alkali-Aggregate Reaction, Quebec, pp.1079-1087, (2000).
26.劉志堅,「台灣地區粒料活性探討暨鹼質與粒料反應電化學維修策略研究」,博士論文,國立中央大學土木工程研究所,中壢,(2003)。27.陳登義,「以電化學技術抑制鹼質與粒料反應之基礎研究」,碩士論文,國立中央大學土木工程研究所,中壢,1999年。28.Whitmore D. and Abbott S. “Use of an applied electric field to drive lithium ions into alkali-silica reactive structures”, 11th International Conference on Alkali-Aggregate Reaction, Quebec, pp.1089-1098, (1992).
29.陳桂清,「電化學技術應用於鹽害RC結構物之去鹽成效與鋼筋腐蝕行為研究」,博士論文,國立中央大學土木工程研究所,中壢,(1999)。30.Natesaiyer, K. and Hober, K.C., “Investigation of electrical effects on alkali-aggregate reaction”, Proceeding of the 7th International Conference on Alkali-Aggregate Reaction, Ottawa, Canada. pp. 466-471, (1986).
31.Kuroda, T., Nishibayashi S., and Bian Q., “Study of alkali-aggregate reactions in electrical fields”, Proceeding of the 10th International Conference on Alkali-Aggregate Reaction, Melbourne, Astralia, pp.884-891 (1996).
32.Sergi, G. and Page, C.L., “The effects of cathodic protection on alkali-silica reaction in reinforced concrete”, TRRL Contract Report, No. 310, pp. 1-53, (1992).
33.Ali, M.G. and Rasheeduzzafar, “Cathodic protection current accelerates alkali-silica reaction”, ACI Materials Journal May-June issue. Vol. 90, pp 247-252.
34.Torii K. etc. “Influence of cathodic protection on cracking and expansion of the beams due to alkali-silica reaction”, Proceeding of the 10th International Conference on Alkali-Aggregate Reaction, Melbourne, Astralia, pp.653-660 (1996).
35.Page, C.L., “Interfacial effects of electrochemical protection methods applied to steel in chloride-containing concrete,” Rehabilitation of Concrete Structures Proceedings of International Conference, Held by RILEM MELBOURNE, pp. 179-187 (1992).
36.陳清華,「混凝土結構物植筋補強之基礎研究」,碩士論文,國立中央大學土木工程研究所,中壢,(2001)。37.Jiang-Jhy Chang, Weichung Yeih, and Ran Huang, “Degradation of the bond strength between rebar and concrete due to the impressed cathodic current”, Journal of Marine Science and Technology, Vol. 7, No. 2, pp. 89-93, (1999).
38.Andrade, C., “Calculation of chloride diffusion coefficients in concrete from ionic migration measurements,” Cement and Concrete Research, Vol. 23, pp. 724-742 (1993).
39.Emmanuel, E. et al., “Chloride extraction and realkalization of reinforced concrete stop steel corrosion”, Journal of Performance of Constructed Facilities, Vol. 12, No. 2, pp. 77-84, (1998).
40.蘇銘鴻,「電滲法運用於抑制鹼質與粒料反應之基礎研究」,碩士論文,國立中央大學土木工程研究所,中壢 (2002)。41.Ahmad S., “Combined effects of alkali-aggregate reaction (AAR) and cathodic protection currents in reinforced concrete”, Proceeding of the 11th International Conference on Alkali-Aggregate Reaction, Quebec, Canada, pp.229-238 (2000).
42.CNS 11152 「根據鋼筋混凝土握裹力比較混凝土性能試驗法」。
43.CNS 1010 「水硬性水泥墁料抗壓強度檢驗法(用50 mm或2 in立方體試體)」。
44.ASTM C227-97, “Standard Test Method for Potential Alkali Reactivity of Cement-Aggregate Combinations (Mortar-Bar Method),” Annual Book of ASTM Standards, Section 4, Vol.04.02, 1999.
45.ASTM C1202-97, “Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration,” USA, 1989.