|
[1] The Geometric Algebra Research Group, http://www.mrao.cam.ac.uk/~clifford/ [2] D. Hestenes and G. Sobczyk, "Cliford Algebra to Geometric Calculus", D. Reidel Publishing, 1984. [3] William E. Baylis, Editor, "Clifford (Geometric) Algebras", Birkhauser Publishing, 1996. [4] A. N. Lasenby and C. J. L. Doran, "A Lecture Course in Geometric Algebra", http://www.mrao.cam.ac.uk/~clifford/ptIIIcourse/course99/ [5] C. J. L. Doran and A. N. Lasenby, "Physical Applications of Geometric Algebra", http://www.mrao.cam.ac.uk/~clifford/ptIIIcourse/ [6] C. J. L. Doran, "Geometric Algebra and its Application to Mathematical Physics", PhD thesis, Cambridge University, 1994. [7] A. N. Lasenby, C. J. L. Doran and S. F. Gull, "Gravity, gauge theories and geometric algebra", Phil. Trans. R. Soc. Lond. A356, 487-582 (1998). [8] A. N. Lasenby, C. J. L. Doran and S. F. Gull, "A Multivector Derivative Approach to Lagrangian Field Theory", Found. Phys. 23(10), 1295-1327 (1993). [9] A. Lewis, C. Doran and A.N. Lasenby, "Quadratic Lagrangians and Topology in Gauge Theory Gravity", General Rel. Grav. 32(1), 161 (2000). [10] D. Hestenes, "Space Time Algebra", Gordon & Breach, New York,1966. [11] A. Dmakis and F. Müller-Hoissen, "Clifform calculus with applications to classical field theories", Class. Quantum Grav. 8 (1991) 2093-2132. [12] Yung-Kang Lin, "Geometric Algebra and Differential Forms: Translation and Gravitational Application", MSc Thesis, National Central University, 2003. [13] Chiang-Mei Chen and James M. Nester, "Quasilocal quantities for GR and other gravity theories", Class. Quantum Grav. 16 (1999) 1279-1304. [14] Chiang-Mei Chen, "Quasilocal Quantities for Gravity Theories", MSc Thesis, National Central University, 1994. [15] 孟繁蕃, "Quasilocal center-of-mass moment in general relativity", MSc Thesis, National Central University, 2002. [16] Shiuan-Ni Liang, "Geometric Algebra: Spinors and the Positivity of Gravitational Energy", MSc Thesis, National Central University, 2003
|