跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.88) 您好!臺灣時間:2024/12/04 13:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾建榮
研究生(外文):Chien-Jung Tseng
論文名稱:鐵與錳含量對A206鋁合金機械性質的影響
論文名稱(外文):Effects of Fe and Mn contents on mechanical properties of A206 alloy
指導教授:李勝隆李勝隆引用關係
指導教授(外文):Sheng-Long Lee
學位類別:博士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:100
中文關鍵詞:疲勞裂縫成長破裂韌性導電度DSC機械性質MnFeA206鋁合金
外文關鍵詞:A206FeMechanical propertiesDSCMnelectrical condductivityfracture toughnessfatigue crack growth
相關次數:
  • 被引用被引用:3
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文是以商用A206鋁合金為基礎,分別添加不同比例的Fe及Mn,以研究此二元素的含量對A206鋁合金拉伸性質的影響;另外也對不同鐵含量對破裂韌性及疲勞裂縫成長特性的影響加以研究。研究中使用光學顯微鏡、電子顯微鏡/電子微探儀(EPMA)、影像分析、導電度量測及熱差掃描分析(DSC)等來觀察材料的微結構。拉伸性質試驗的結果顯示,Fe的增加會使針狀Cu2FeAl7富鐵相的體積分率成比例增加;Mn的增加會抑制針狀富鐵相的形成,使其轉為較圓的中文字型富錳相。高錳合金於鑄造時,部分的錳元素會固溶在基地中,於固溶處理時會析出Cu2Mn3Al20 顆粒,因而阻止其晶粒的成長。針狀、富錳相及Cu2Mn3Al20 等顆粒均會導致鋁基地中的銅固溶量降低;同時,增加鋁基地中的錳含量會延緩強化相的析出。DSC分析顯示θ''的析出動力及析出量會隨著Fe 及Mn含量的增加而降低,尤其以錳的添加為甚。Cu2Mn3Al20 顆粒的析出及其所導致的較小晶粒會增加高錳合金於固溶狀態時的硬度,而T7狀態的硬度則由θ'' 相的析出量來決定。Fe含量的增加會使合金的強度以接近線性的方式遞減,延性更是大幅下降。Mn含量的增加對提升低Fe合金的機械性質之效果不明顯;在高Fe合金,Mn含量的增加會使降伏強度降低,抗拉強度則未有明顯的變化,然而會使延伸率大幅增加。
關於鐵含量對破裂韌性及疲勞裂縫成長特性的影響方面,由於Cu2FeAl7顆粒的斷裂及與基地剝離所形成的空孔,會加速A206合金的破裂過程。增加鐵含量會增加Cu2FeAl7顆粒的體積分率,會導致在區域II及III的裂縫成長速率增加並會降低破裂韌性。在A206合金的破裂過程中,Cu2FeAl7顆粒的破裂模式會影響裂縫延伸速率。在低ΔK (或K)時其破裂模式大多為斷裂,對裂縫延伸的影響較小;而當ΔK (或K)增高時,與基地剝離數量逐漸增多而產生較大的劈裂平面,對裂縫延伸的影響較大。增加鐵含量會輕微降低合金的起始應力強度因子ΔKth,這是由於增加鐵含量會降低其機械強度。
The effects of Fe and Mn contents on tensile properties and effects of Fe contents on fracture toughness and fatigue crack growth behaviors of aluminum-base A206 alloys were investigated. Optical microscopy, scanning electron microscopy/electron microprobe (EPMA), image analysis, electrical conductivity and scanning differential calorimetry (DSC) were used to examine the microstructures of alloys. Results of tensile properties showed that the addition of Fe caused a loss in both ductility and yield strength. Further addition of Mn can recover the ductility, but it caused a further loss in yield strength, and caused no change in tensile strength. In low Mn alloys (0.29 wt% Mn) the primary constituent was the needle shape of Cu2FeAl7, when further addition of Mn the Chinese script of Mn-bearing formed instead. The Cu2Mn3Al20 particles formed in high Mn alloys during solution treatment and resulted in grain growth inhibition. The needle, Mn-bearing and Cu2Mn3Al20 particles cause the solid solution level of copper in matrix to decrease; meanwhile, increasing the Mn solution level retards the precipitation of strengthening phase. DSC analyses show the kinetics and amount of θ'' phase precipitation decrease when the contents of Fe and/or Mn are increased. The smaller grain size induced by the Cu2Mn3Al20 particles and the θ'' phase are the factors that determine the hardness of A206 alloys under as-quenched and T7 treated conditions, respectively.
The fracture processes of A206 alloys are accelerated by void nucleation at Cu2FeAl7 particles as a result of their cracking and decohesion from the matrix. Increasing the Fe content will increase the volume fraction of Cu2FeAl7 particles, which induced higher crack growth rates in regions II and III and reduced fracture toughness. The fracture mode of Cu2FeAl7 particles dominates the crack extension behaviors of high-Fe contained A206 alloys. In low ΔK (or K), the fracture morphology of the particles is mostly in cracking mode. With increasing ΔK (or K), the sites of the particles decohered from Al-matrix increase, associated with big flat cleavage surfaces accelerating the crack extension. The effect of Fe on decreasing threshold stress intensity rangeΔKth is more apparent in higher Fe-content alloy than in lower Fe-content alloys. It is ascribed to the greater mechanical strength in lower Fe-content alloys.
一、研究背景與文獻回顧……………………………………1
1.1鋁合金簡介 ………………………………………………1
1.2 A 206鋁合金簡介 ………………………………………4
1.3 文獻回顧…………………………………………………7
1.4 研究目的 ………………………………………………13
二、理論基礎…………………………………………………14
2.1 A206鑄鋁合金之凝固特性……………………………·14
2.2 Fe元素在Al-Cu合金中的效應………………………·16
2.3 Mn元素在Al-Cu合金中的效應………………………·18
2.4 晶粒成長之抑制………………………………………·21
2.5 析出硬化及206鑄鋁合金之熱處理…………………·26
2.6破裂韌性…………………………………………………·31
2.7疲勞裂縫成長……………………………………………·35
三、鐵與錳含量對拉伸性質的影……………………………41
3.1前言………………………………………………………·41
3.2實驗方法與步驟…………………………………………·41
3.2.1 合金配製與鑄造 …………………………………··42
3.2.2 熱處理……………………………………………····45
3.2.3 導電度量測………………………………………···45
3.2.4 金相觀察…………………………………………···46
3.2.5 影像分析(IA)…………………………………···46
3.2.6 電子微探儀分析(EPMA)/SEM………………··47
3.2.7 熱差掃瞄分析(DSC)…………………………···47
3.2.8 硬度試驗…………………………………………··48
3.2.9 拉伸試驗…………………………………………··48
3.3 結果與討論……………………………………………··48
3.3.1微結構分析………………………………………···48
3.3.2影像分析…………………………………………···54
3.3.3 DSC………………………………………………···55
3.3.4導電度及晶粒大小………………………………···58
3.3.5硬度與拉伸性質…………………………………···62
3.4 結論……………………………………………………··67
四、鐵含量對破裂韌性及疲勞裂縫成長性質的影響…………·69
4.1 前言……………………………………………………··69
4.2實驗方法與步驟………………………………………···71
4.2.1 微結構觀察與拉伸性質試驗……………………··71
4.2.2 破裂韌性試驗……………………………………··74
4.2.3 疲勞裂縫成長試驗………………………………··76
4.3 結果與討論……………………………………………··78
4.3.1 微結構觀察………………………………………··78
4.3.2 拉伸性質…………………………………………··81
4.3.3 破裂韌性…………………………………………··81
4.3.4 疲勞裂縫成長……………………………………··85
4.4. 結論……………………………………………………·90
五、總結論………………………………………………………·91
六、未來研究方向………………………………………………·92
七、參考文獻……………………………………………………·93
附錄A:著作表…………………………………………………100
1.John E. Hatch, Aluminum: Properties and Physical Metallurgy, ASM International, Metals Park, Ohio, (1984), pp. 351-377.
2.John E. Hatch, Aluminum: Properties and Physical Metallurgy, ASM International, Metals Park, Ohio, (1984), pp. 320-350.
3.J. R. Davis & Associates, ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International Materials Park, Ohio, (1994), pp.89-120.
4.Knutsson and G. Sjoberg, “Aluminum can recycling in Sweden”, Light Metals, 1992, TMS, (1992), pp. 1137-1141.
5.Kearney, “Alloy History”, Trialco Aluminum Data Sheet, Table. 1, Chicago Heigth, IL., (1983).
6.J. Raffin, US Patent No. 3475166 (Oct. 26, 1969).
7.John E. Hatch, Aluminum: Properties and Physical Metallurgy, ASM International, metals park, Ohio, (1984), pp. 362-364.
8.N.J. Davidson, “Review of the Mechanical Properties, Reliability and Usage of Ultra High Strength Aluminum Casting Alloys 201.0 and 206.0”, Current Aluminum Research and Application, (1988), pp. 232-247.
9.J. R. Davis & Associates, ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International Materials Park, Ohio, (1994), pp.708-709.
10.D. L. Colwell and R. J. Kissling, “Die and permanent mold casting aluminum alloy minor elements”, AFS Trans., Vol. 69, (1961), pp. 610-615.
11.C. Mascre, “Influence of Iron and Manganese of Type A-S13 (Alpex) Alloys”, Fonderie, Vol. 108, (1955), pp. 4330-4336.
12.P. Janason, “Thermal Fatigue of Cylinder Head Alloys”, AFS Trans., Vol. 160, (1992), pp. 601-607.
13.W. Bonsack, “Iron-Tht Problematic Factor in Quality of Aluminum Alloy Die Casting”, AFS Trans., Vol. 69, (1961), pp. 712-720.
14.S. Jocob and D. Fontaine, “Burning of A-U5GT alloy during heat treatment”, Fonderie, Vol. 294, (1970), pp. 326-336.
15.E.M. Passmore, M.C. Flemings and H.F. Taulor, “Fundamental Studies on Effects of Solution Treatment, Iron Content and Chilling of Sand Cast Aluminum-Copper Alloy”, AFS Trans., Vol. 66, (1958), pp. 96-103.
16.A. Couture, “Iron in aluminum casting alloys-A literature survey”, AFS Int. Cast Metals J., Vol, 6, (1981), pp. 9-17.
17.H. Chadwick, "Hot Shortness of Al-4.5% Cu Alloy", CAST METALS, Vol. 4, No. 1, (1991), pp. 43-49.
18.G. K. Sigworth, “Determining grain size and eutectic modification in aluminum alloy castings”, Modern Casting, July (1987), pp. 23-25.
19.W. Bonsack, “Effects of minor alloying elements on aluminum casting alloys”, ASTM Bull. No. 124, Oct. (1943), pp. 41-51.
20.Vorren, J. E. Evensen and T. B. Pedersen, “Microstructure and mechanical properties of AlSi(Mg) casting alloys”, AFS Trans., (1984), pp. 459-466.
21.P. Skjerpe, “Intermetallic phases formed during DC-casting of an Al-0.25 wt%Fe-0.13 wt%Si alloy”, Metall. Trans. A, Vol, 18, (1987), pp. 189-200.
22.L. A. Bendersky, A. J. Mcalister and F. S. Biancaniello, “Phase transformation during annealing of rapidly solidified Al-rich Al-Fe-Si alloys”, Metall. Trans. A, Vol. 19A, (1988), pp. 2893-2900.
23.B. Xiufang, Z. Guohua, “The Spheroidisation of Needle-Form Iron Compounds in an Al-Si alloy”, AFS International Cast Metal Journal, Vol. 5, (1992), pp. 39-41.
24.Y. Awano and Y. Shimizu, “Non-equilibrium Crystallization of AlFeSi compound in Melt-Superheated Al-Si Alloy Casting”, AFS Trans., Vol. 176. (1990), pp. 889-895.
25.S. Murali, K.S. Raman and K.S.S. Murathy, “Effects of Mg,Fe(impurty) and Solidification Rates on the Fracture Toughness of Al-7Si-0.3Mg Casting Alloys”, Mater. Sci. Eng., Vol. A151, (1992), pp. 1-10.
26.L.A. Narayanan, F.H. Samuel and J.E. Gruzleski, “Dissolution of Iron Intermetallics in Al-Si Alloys Through Nonequilibrium Heat Treatment”, Metall. Trans. A, Vol. 26A, (1995), pp. 2161-2174.
27.G. T. Hahn and A. R. Roesnfield, “Metallurgical factors affecting fracture toughness of aluminum alloys”, Metall. Trans. A, Vol. 6A, (1975), pp. 653-670.
28.E. N. Pan, M. W. Hsieh, S. S. Jang and C. R. Loper, “Study of the influence of processing parameters on the microstructure and properties of A356 aluminum alloy”, AFS Trans., Vol. 89-73, pp. 397-414.
29.W. Laorchan and J. E. Gruzleski, “Grain refinement, modification and melt hydrogen-their effects on micro-porosity, Shrinkage and Impact properties in A356 alloy”, AFS Trans., Vol.92-39, pp. 415-424.
30.邱弘興,胡瑞峰,.潘永寧, “製程參數對A356 鋁合金孔洞影響之探討”,中國機械工程會第八屆學術研討會, 台北市、民國80年11月24日, pp. 983-992.
31.A. M. Samuel, and F. H. Samuel, “A metallographic study of porosity and fracture in relation to the tensile properties in 319.2 end chill castings”, Metall. Mater. Trans. A, Vol.26A, (1995), pp. 2359-2372.
32.A. M. Samuel and F. H. Samuel, “Effect of melt treatment, solidification conditions and porosity level on the tensile properties of 319.2 endchill aluminum castings”, J. Mater. Sci., Vol. 30, (1995), pp. 4823-4833.
33.R. Dasgupta, C. C. Brown and S. Marek, “Effect of increased magnesium content on the mechanical properties of sand-cast 319 aluminum alloy”, AFS Trans., Vol. 89-34, pp. 245-253.
34.D. Argo, J. E. Gruzleski, “Porosity in modified aluminum alloy castings”, AFS Trans., Vol. 88-16, pp. 65-74.
35.W. R. Opie and N. J. Grant, “Hydrogen solubility in aluminum and some aluminum alloys”, Trans. AIME, Vol. 188, (1950), pp. 1237-1241.
36.S.T. Kao, E. Chang and Y.W. Lee, “Role of Interdendritic Fluid Flow on the Porosity Formation in A206 Alloy Plate Castings”, Materials Trans., JIM, Vol. 35, no. 9, (1994), pp. 632-639.
37.A.L. Kearney and J. Raffin, “Mechanical Properties of Aluminum Castings Alloys X 206.0-T4 and XA206.0-T7 vs. Comparable Alloys at Various Cooling Rates”, AFS Trans., (1977), pp. 559-570.
38.G.K. Mac Allister, “Effects of Cooling Rates on the Mechanical Properties of A206.0-T4 and A206.0-T71 Aluminum Alloy Castings”, Current Aluminum Research and Application, AFS Trans., (1988), pp. 157-168.
39.H. T. Wu, “The refinement of aluminum and its alloys”, 鑄工, 第14期 (Sept. 1977), pp.47-52.
40.M. Easton and D. StJohn, “Grain refinement of aluminum alloys: part II. Confirmation of, and a mechanism for, the solute paradigm”, Metall. Mater. Trans. A, Vol. 30A, (1999), pp. 1625-1633.
41.M. M. Guzowski, G. K. Sigworth and D. A. Senter, “The role of boron in the grain refinement of aluminum with titanium”, Metall. Trans., Vol. 18A, (1987), pp. 603-619.
42.H. T. Wu, L. C. Wang and S. K. Kung, “Influence of grain refine master alloys addition on A356 aluminum alloy”, 鑄工, 第29期 (June 1981), pp.10-18.
43.L. F. Mondolfo, Aluminum Alloys: Structure and Properties, London, Butterworth’s, Ltd., (1976), p. 437-439.
44.M. Easton and D. StJohn, “Grain refinement of aluminum alloys: part I. The nucleant and solute paradigms-a review of the literature”, Metall. Mater. Trans. A, Vol. 30A, (1999), pp. 1613-1623.
45.M. Johnsson and L. Bäckerud, Z. Metallkd., Vol. 87, no. 3, (1996), pp. 216-220.
46.G. K. Sigworth, S. Shivkumar and D. Apelian, “The influence of molten metal processing on mechanical properties of cast Al-Si-Mg alloys”, AFS Trans., Vol. 139, (1989), pp. 811-824.
47.P. S. Mohanty and J. E. Gruzleski, “Mechanism of grin refinement in aluminum”, Acta Metall. Mater., Vol. 43, pp. 2001-2012.
48.Robert E. Read-Hill, “Physical Metallurgy Principles”, 3rd ed., (1992), pp.192-193.
49.L.F. Mondolfo, “Aluminum Alloys: Structure and properties”, London, Butterwordths and Co. Ltd., (1976), pp. 693-724.
50.F.R. Mollard, “Influence of Chemical Composition and Heat Treatment on Properties of KO-1 Alloy”, AFS Trans., Vol. 79, (1970), pp. 443-449.
51.S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita, T.G. Langdon, “Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al—Mg alloys”, Acta Mater., Vol. 50, (2002), pp. 553—564.
52.John E. Hatch, Aluminum: Properties and Physical Metallurgy, ASM International, Metals Park, Ohio, (1984), pp. 234-235.
53.S. Murali, K. S. Raman and K. S. S. Murthy, “Effect of trace additions (Be, Cr, Mn and Co) on the mechanical properties and fracture toughness of Fe-containing Al-7Si-0.3Mg Alloy”, Cast Metals, Vol. 6, (1994), pp. 189-198.
54.G. Gustafsson, T. Thorvaldsson, and G. L. Dunlop, “The influence of Fe and Cr on the microstructure of cast Al-Si-Mg alloys”, Metall. Trans. A, Vol. 17A, (1986), pp. 45-52.
55.L. F. Mondolfo, Aluminum Alloys: Structure and Properties, London, Butterworth’s, Ltd., (1976), p. 576.
56.Y. H. Tan, S. L. Lee and Y. L. Lin, “Effects of Be and Fe additions on the microstructure and mechanical properties of A357.0 alloys”, Metall. and Mater. Trans. A, Vol. 26A, (1995), pp. 1195-1205.
57.Y. H. Tan, S. L. Lee and Y. L. Lin, “Effects of Be and Fe content on plane strain fracture toughness in A357 alloys”, Metall. Mater. Trans. A, Vol. 26A, (1995), pp.2937-2945.
58.P.S. Warng, Y.J. Liauh, S.L. Lee and J.C. Lin, “Effects of Be Addition on Microstructures and Mechanical Properties of B319.0 Alloys”, Materials Chemistry and Physics, Vol. 53, (1998), pp. 195-202.
59.L. A. Narayanan, F. H. Samuel and J. E. Gruzleski, “Crystallization behavior of iron-containing intermetallic compounds in 319 aluminum alloy”, Metall. and Mater. Trans. A, Vol. 25A, (1994), pp. 1761-1773.
60.Y. Shimizu, Y. Awano and M. Nakamura, Paper presented at 96th casting congress, Milwaukee, WI, (1992), AFS no. 92-135.
61.Yoshihiro Shimizu, Yoji Awano and Motoyuki Nalamura, “Heating in the solid liquid coexisting temperature range for improvement of the impact strength of Al- Si- Cu alloy castings”, 輕金屬, Vol. 40, (1990), pp. 409-415.
62.Y. Shimizu, Y. Awano and M. Nakamura, “New solution treatment for Al-Si-Cu alloy castings at non-equilibrium eutectic melting temperatures”, 輕金屬, Vol. 38, (1988), pp. 202-207.
63.P.S. Wang, S.L. Lee, J.C. Lin and M.T. Jhan, “Effects of solution temperature on mechanical properties of 319.0 aluminum casting alloys containing trace beryllium”, J. Materials Research, Vol. 15, (2000), pp. 2027-2035.
64.L. F. Mondolfo, Aluminum Alloys: Structure and Properties, London, Butterworth’s, Ltd., (1976), pp. 253-266, p. 635.
65.L. Bäckerud, G. Chai, J. Tamminen, Solidification Characteristics of Aluminum alloys, AFS/SKAN ALUMINUM, Vol. 2, (1990), pp. 63-67.
66.L. F. Mondolfo, Aluminum Alloys: Structure and Properties, London, Butterworth’s, Ltd., (1976), p. 283, p. 491, pp. 534-536.
67.C.G. Cordovilla, E. Louis, “Characterization of the microstructure of a commerical Al-Cu alloy (2011) by differntial scanning calorimetry (DSC)”, J. Material science, Vol. 19, (1984), pp. 279-290.
68.Metal Handbook, ASM, Vol. 8, pp. 262, (1980), p. 262.
69.L. F. Mondolfo, Aluminum Alloys: Structure and Properties, London, Butterworth’s, Ltd., (1976), p. 324, pp. 505-506.
70.I.J. Polmear, Light alloys (Metullurgy and Materials Science), Edward Aronld Ltd., (1982), Ch. 2, pp. 15-46.
71.D.L. Robinson and M.S. Huter, “Interrelation of TEM Microstructure, Composition, Tensile Properties, and Corrosion Resistance of Al-Cu-Mg-Mn Alloys”, Metall. Trans., Vol. 3, (1972), pp. 1147-1155.
72.劉國雄、林樹均、李勝隆、鄭晃中、葉均蔚編著:工程材料科學,全華圖書,p. 328-332.
73.劉國雄、葉均蔚:“高強力鋁合金之熱處理-析出硬化”,金屬熱處理, 14期(1985), pp. 1-28.
74.D. Apelian, S. Shivkumar and G. Sigworth, “Fundamental aspects of heat treatment of cast Al-Si-Mg alloys”, AFS Trans., Vol. 89-137, pp. 727-743.
75.J. Gauthier, P. R. Louchez and F. H. Samuel, “Heat treatment of 319.2 aluminum automotive alloy, part 1, solution heat treatment”, AFS Int. Cast Metals, Vol. 8, (1995), pp. 91-106.
76.L. A. Naraynan, F. H. Samuel and J. E. Gruzleski: “Dissolution of iron intermetallics in Al-Si alloys through nonequilibrium heat treatment”, Metall. Mater. Trans. A, Vol. 26A, (1995), pp. 2161-2174.
77.L. E. Marsh and G. Reinenann, AFS Trans., Vol. 87, (1979), pp. 413-422.
78.L.F. Mondolfo, Aluminum Alloys: Structure and properties, Butterwordths, London, 1976, p. 497-504.
79.J.M. Papazian, “Calorimetric Studies of Precipitation and Dissolution Kinetics in Aluminum Alloys 2219 and 7075”, Metall. Trans. A, Vol. 13, (1982), pp. 761-769.
80.M.J. Starink, P.V. Mourik, “Calorimetric Study of Precipitation an Al-Cu Alloy with Silicon Particles”, Metall. Trans. A, Vol. 22A, (1991), pp. 665-674.
81.“Aerospace Material Specification”, AMS 4235A, AMS4236 (1987).
82.K. Hono, N. Sano, S. S. Babu, R. Okano and T. Sakurai, “Atom probe study of the precipitation process in Al-Cu-Mg-Ag alloys”, Acta Metall. Mater., Vol. 41, (1993), pp. 829-838.
83.B.C. Muddle and I.J. Polmear, “The PrecipitateΩphase in Al-Cu-Mg-Ag Alloys”, Acta Metall., Vol. 37, (3), (1989), pp. 777-789.
84.J.M. Silcock, B.Sc., “The Structural Ageing Characteristics of Al-Cu-Mg Alloys with Copper: Magnesium Weight Ratios of 7 : 1 and 2.2 : 1”, J. Inst. Metals. Vol. 89, (1960), pp. 203-210.
85.David Broek, The Practical Use of Fracture Mechanics, Kluwer Academic Publishers, (1988), pp. 48-86.
86.G. R. Irwin, Fracture Dynamics in Fracturing Of Metals, American Society of Metals, Cleveland, (1948).
87.ASM Handbook, Vol. 19, Fatigue and Fracture, Materials Park, Ohio, (1996), p.565-588.
88.H. O. Fuchs and R. I. Stephens, Metal Fatigue in Engineering, April (1980), p. 48-52.
89.Julie A. Bannantine, Jess J. Comer and James L. Handrock, Fundamentals of metal fatigue analysis, Prentice Hall, New Jersey, (1990), pp. 88-114.
90.D. N, Lal, A new mechanistic approach to analysing LEFM fatigue crack growth behaviour of metals and alloys. Eng. Frac. Mech., Vol.47, No.3, (1994), pp.379-401.
91.J. C. Russ, Practical Stereology, Plenum Press, New York, (1986), p. 35-51.
92.ASTM B557-84, Annual Book of ASTM Standards, Vols. 03.01 and 02.02.
93.ASTM E8-89b, Annual Book of ASTM Standards, Vol. 03.01.
94.G. Petzow, and G. Effenberg, Ternary alloys (NY, VCH, New York, 1991), Vol. 4, p. 573.
95.A.K. Jena, A. K. Gupta, and M. C. Chaturvedi, “A differential scanning calorimetric investigation of precipitation kinetics in the Al-1.53 wt% Cu-0.79 wt% Mg alloy”, Acta Metall. Vol. 37, (1989), pp. 885-895.
96.G. Biroli, G. Caglioti, L. Martini and G. Riontino, “Precipitation kinetics of AA4032 and AA6082: A comparison based on DSC and TEM”, Scripta Mater., Vol. 39, no. 2, (1998), pp. 197-203.
97.S. Suresh, T. Christman and Y. Sugimura, “Accelerated aging in cast Al alloy-SiC particulate composites”, Scripta Metall., Vol. 23, (1989), pp. 1599-1602.
98.J. Miyake, G. Ghosh, M.E. Fine, “Design of high-strength, high-conductivity alloys”, MRS Bull. Vol. 21, (1996), pp. 13-18.
99.J.Y. Barghout, G.W. Lorimer, R. Pilkington, and P.B. Prangnell, “Effects of second phase particles, dislocation density and grain boundaries on the electrical conductivity of aluminum alloys”, Mater. Sci. Forum, Vol. 217-222, (1996), pp. 975-980.
100.J. T. Staley, "Microstructure and toughness of high-strength aluminum alloys" Properties Related to Fracture Toughness, ASTMSTP 605, Am. Soc. Testing Mats., (1976), pp.71-l 03.
101.J. H. Mulherin and H. Rosenthal, “Influence of nonequilibrium second-phase particles formed during solidfication upon the mechanical behavior of an aluminum alloy”, Metall. Trans. Vol. 2. Feb (1971), pp. 427-432.
102.T. Kobayashi, “Strength and fracture of aluminum alloys”, Mater. Sci. Eng., Vol. A280, No.1, (2000), pp. 8-16.
103.H. CAI, J.T. Evans and N.T.H. Holroyd, "Unstable crack extension in high strength aluminum alloy", Acta Metal., Vol. 39, No. 10, (1991), pp.2243-2250.
104.Jien-Wei Yeh, "A Study Relating to the Enhancement of Transgranular Fracture by Iron in Al-Zn-Mg Alloys", Scripta Metall., Vol. 20, (1986), pp. 329-334.
105.D.S. Thompson and S.A. Levy: AFML-TR-70-171, Wrigth-Patterson AFB, Ohio, (1970).
106.Manabu Nakai, Takehiko Eto, “New aspects of development of high strength aluminum alloys for aerospace applications”, Mater. Sci. Eng., Vol. A285, (2000), pp. 62—68.
107.Meng L. and Zheng X. L., “Effect of Cerium and impurities on fatigue and fracture properties of 8090 alloy sheets”, Scripta Metall. Mater., Vol. 33, No. 1, (1995), pp.27-31.
108.S. Suresh, A.K. Vasudevan and P.E. Bretz, “Mechanism of slow fatigue crack growth in high strength aluminum alloys: Role of microstructure and environment”, Metall. Trans. Vol. 15A, (2), (1984), pp.369-379.
109.T. Kobayashi, “Strength and fracture of aluminum alloys”, Mater. Sci. Eng., Vol. A280, No. 1, (2000), pp. 8-16.
110.T.S. Srivatsan and D.L.Jr, “Microstructure, tensile properties and fracture behaviour of an Al-Cu-Mg alloy 2124”, J. Mats. Sci., Vol. 28, (1993), pp.3205-3213.
111.M.J.Couper, A.E.Neeson and J.R.Griffiths, “Casting deflects and the fatigue behaviour of an aluminum casting alloy”, Fat. Frac. Eng. Mat. Str., Vol.13, (1990), pp-213-227.
112.A.A. Dabayeh, R. X. Xu, B. P. Du and T.H. Topper, “Fatigue of cast aluminium alloys under constant and variable-amplitude loading”, International Journal of Fatigue Vol. 18, No. 2, Feb., (1996), pp. 95-104.
113.S. Murali, T.S. Arvind, K.S. Raman and K.S.S. Murthy, “Fatigue properties of sand cast, stircast and extruded Al-7Si-0.3Mg alloy with trace additions of Be and Mn”, Materials Trans., JIM, Vol. 38, No. 1, (1997), pp. 28-36.
114.M. Jain, “TEM study of microstructure development during low-cycle fatigue of an overaged Al-Mg-Si alloy”, J. Mater. Sci., Vol.27, (1992), pp.399-407.
115.H. Egashira, M. Niinomi, T. Kobayashi and S. Kohmura, “Effects of metallurgical factors on the fatigue crack propagation characteristics in high-purtity Al-Si casting alloys”, J. Japan Inst. Light Metals, Vol. 39, No.12, (1989), pp.878-885.
116.Y. H. Tan, S. L. Lee and H.Y. Wu, “Effects of beryllium on fatigue crack propagation of A357 alloys containing iron”, Int. J. Fatigue, Vol. 18, No. 2, (1996), pp.137-147.
117.ASTM E399-90, Annual Book of ASTM Standards, Vol. 03.01.
118.ASTM E647-88a, Annual Book of ASTM Standards, Vol. 03.01.
119.R. F. Smith and P. Doig, “Crack length measurement by compliance in fracture toughness testing”, Experiments Mechanics, June (1986), pp. 122-127.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 廖淑容、周志龍(2000),臺灣地方經濟發展制度架構之芻議--以北部沿海若干鄉鎮為例,建築與規劃學報,第1卷第2期,第13-34頁。
2. 吳濟華(1989),地方經濟活性化政策: 日本區域工業化經驗的探討,臺灣經濟金融月刊,第25卷第5期,第40-52頁。
3. 蔡祈賢(1996),社區意識與社區發展,社會福利,第124期,第21-26頁。
4. 蔡宏進(1996),社區發展中對社區組織的運用,社區發展季刊,第75期,第135-143頁。
5. 蔡宏明(2000),由產業演化看傳統產業競爭力的提升,經濟情勢暨評論,第5卷第4期,第37-64頁。
6. 劉潔心、晏涵文、邱詩揚(1998),社區環境需求、組織運作及其環境行動之現況調查研究--以大安區民輝社區之個案研究經驗為例,公共衛生,第25卷第1期,第33-47頁。
7. 陳建勛(2000),傳統產業式微下金融業因應之道,今日合庫,第26卷第5期,第55-78頁。
8. 張璠、張吉宏、朱琦文(2001),體驗經濟時代來臨對工業區域發展之影響,經濟情勢暨評論,第6卷第4期,第154-169頁。
9. 張建一(2002),全球化趨勢對臺灣製造業的衝擊與因應之道,臺灣經濟研究月刊,第25第6期,第28-32頁。
10. 晉麗明(2000),傳統產業的十大危機,管理雜誌,第307期,第30-33頁。
11. 夏鑄九(1999),市民參與和地方自主性:台灣的社區營造,城市與設計學報,第9卷第10期,第17-183頁。
12. 邱詩揚、劉潔心、晏涵文(1999),強化社區組織功能之參與式行動研究,衛生教育學報,第12期,第23-47頁。
13. 吳濟華(1994),地方產業發展與引進之研究--以雲林科技工業區發展為例,臺灣銀行季刊,第45卷第3期,第232-258頁。
14. 王順美、葉燕燕(1998),社區環境行動及其環境教育意義-以83年度臺北市十大環保社區為例,公共衛生,第25卷第2期,第93-105頁。