|
1.John E. Hatch, Aluminum: Properties and Physical Metallurgy, ASM International, Metals Park, Ohio, (1984), pp. 351-377. 2.John E. Hatch, Aluminum: Properties and Physical Metallurgy, ASM International, Metals Park, Ohio, (1984), pp. 320-350. 3.J. R. Davis & Associates, ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International Materials Park, Ohio, (1994), pp.89-120. 4.Knutsson and G. Sjoberg, “Aluminum can recycling in Sweden”, Light Metals, 1992, TMS, (1992), pp. 1137-1141. 5.Kearney, “Alloy History”, Trialco Aluminum Data Sheet, Table. 1, Chicago Heigth, IL., (1983). 6.J. Raffin, US Patent No. 3475166 (Oct. 26, 1969). 7.John E. Hatch, Aluminum: Properties and Physical Metallurgy, ASM International, metals park, Ohio, (1984), pp. 362-364. 8.N.J. Davidson, “Review of the Mechanical Properties, Reliability and Usage of Ultra High Strength Aluminum Casting Alloys 201.0 and 206.0”, Current Aluminum Research and Application, (1988), pp. 232-247. 9.J. R. Davis & Associates, ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International Materials Park, Ohio, (1994), pp.708-709. 10.D. L. Colwell and R. J. Kissling, “Die and permanent mold casting aluminum alloy minor elements”, AFS Trans., Vol. 69, (1961), pp. 610-615. 11.C. Mascre, “Influence of Iron and Manganese of Type A-S13 (Alpex) Alloys”, Fonderie, Vol. 108, (1955), pp. 4330-4336. 12.P. Janason, “Thermal Fatigue of Cylinder Head Alloys”, AFS Trans., Vol. 160, (1992), pp. 601-607. 13.W. Bonsack, “Iron-Tht Problematic Factor in Quality of Aluminum Alloy Die Casting”, AFS Trans., Vol. 69, (1961), pp. 712-720. 14.S. Jocob and D. Fontaine, “Burning of A-U5GT alloy during heat treatment”, Fonderie, Vol. 294, (1970), pp. 326-336. 15.E.M. Passmore, M.C. Flemings and H.F. Taulor, “Fundamental Studies on Effects of Solution Treatment, Iron Content and Chilling of Sand Cast Aluminum-Copper Alloy”, AFS Trans., Vol. 66, (1958), pp. 96-103. 16.A. Couture, “Iron in aluminum casting alloys-A literature survey”, AFS Int. Cast Metals J., Vol, 6, (1981), pp. 9-17. 17.H. Chadwick, "Hot Shortness of Al-4.5% Cu Alloy", CAST METALS, Vol. 4, No. 1, (1991), pp. 43-49. 18.G. K. Sigworth, “Determining grain size and eutectic modification in aluminum alloy castings”, Modern Casting, July (1987), pp. 23-25. 19.W. Bonsack, “Effects of minor alloying elements on aluminum casting alloys”, ASTM Bull. No. 124, Oct. (1943), pp. 41-51. 20.Vorren, J. E. Evensen and T. B. Pedersen, “Microstructure and mechanical properties of AlSi(Mg) casting alloys”, AFS Trans., (1984), pp. 459-466. 21.P. Skjerpe, “Intermetallic phases formed during DC-casting of an Al-0.25 wt%Fe-0.13 wt%Si alloy”, Metall. Trans. A, Vol, 18, (1987), pp. 189-200. 22.L. A. Bendersky, A. J. Mcalister and F. S. Biancaniello, “Phase transformation during annealing of rapidly solidified Al-rich Al-Fe-Si alloys”, Metall. Trans. A, Vol. 19A, (1988), pp. 2893-2900. 23.B. Xiufang, Z. Guohua, “The Spheroidisation of Needle-Form Iron Compounds in an Al-Si alloy”, AFS International Cast Metal Journal, Vol. 5, (1992), pp. 39-41. 24.Y. Awano and Y. Shimizu, “Non-equilibrium Crystallization of AlFeSi compound in Melt-Superheated Al-Si Alloy Casting”, AFS Trans., Vol. 176. (1990), pp. 889-895. 25.S. Murali, K.S. Raman and K.S.S. Murathy, “Effects of Mg,Fe(impurty) and Solidification Rates on the Fracture Toughness of Al-7Si-0.3Mg Casting Alloys”, Mater. Sci. Eng., Vol. A151, (1992), pp. 1-10. 26.L.A. Narayanan, F.H. Samuel and J.E. Gruzleski, “Dissolution of Iron Intermetallics in Al-Si Alloys Through Nonequilibrium Heat Treatment”, Metall. Trans. A, Vol. 26A, (1995), pp. 2161-2174. 27.G. T. Hahn and A. R. Roesnfield, “Metallurgical factors affecting fracture toughness of aluminum alloys”, Metall. Trans. A, Vol. 6A, (1975), pp. 653-670. 28.E. N. Pan, M. W. Hsieh, S. S. Jang and C. R. Loper, “Study of the influence of processing parameters on the microstructure and properties of A356 aluminum alloy”, AFS Trans., Vol. 89-73, pp. 397-414. 29.W. Laorchan and J. E. Gruzleski, “Grain refinement, modification and melt hydrogen-their effects on micro-porosity, Shrinkage and Impact properties in A356 alloy”, AFS Trans., Vol.92-39, pp. 415-424. 30.邱弘興,胡瑞峰,.潘永寧, “製程參數對A356 鋁合金孔洞影響之探討”,中國機械工程會第八屆學術研討會, 台北市、民國80年11月24日, pp. 983-992. 31.A. M. Samuel, and F. H. Samuel, “A metallographic study of porosity and fracture in relation to the tensile properties in 319.2 end chill castings”, Metall. Mater. Trans. A, Vol.26A, (1995), pp. 2359-2372. 32.A. M. Samuel and F. H. Samuel, “Effect of melt treatment, solidification conditions and porosity level on the tensile properties of 319.2 endchill aluminum castings”, J. Mater. Sci., Vol. 30, (1995), pp. 4823-4833. 33.R. Dasgupta, C. C. Brown and S. Marek, “Effect of increased magnesium content on the mechanical properties of sand-cast 319 aluminum alloy”, AFS Trans., Vol. 89-34, pp. 245-253. 34.D. Argo, J. E. Gruzleski, “Porosity in modified aluminum alloy castings”, AFS Trans., Vol. 88-16, pp. 65-74. 35.W. R. Opie and N. J. Grant, “Hydrogen solubility in aluminum and some aluminum alloys”, Trans. AIME, Vol. 188, (1950), pp. 1237-1241. 36.S.T. Kao, E. Chang and Y.W. Lee, “Role of Interdendritic Fluid Flow on the Porosity Formation in A206 Alloy Plate Castings”, Materials Trans., JIM, Vol. 35, no. 9, (1994), pp. 632-639. 37.A.L. Kearney and J. Raffin, “Mechanical Properties of Aluminum Castings Alloys X 206.0-T4 and XA206.0-T7 vs. Comparable Alloys at Various Cooling Rates”, AFS Trans., (1977), pp. 559-570. 38.G.K. Mac Allister, “Effects of Cooling Rates on the Mechanical Properties of A206.0-T4 and A206.0-T71 Aluminum Alloy Castings”, Current Aluminum Research and Application, AFS Trans., (1988), pp. 157-168. 39.H. T. Wu, “The refinement of aluminum and its alloys”, 鑄工, 第14期 (Sept. 1977), pp.47-52. 40.M. Easton and D. StJohn, “Grain refinement of aluminum alloys: part II. Confirmation of, and a mechanism for, the solute paradigm”, Metall. Mater. Trans. A, Vol. 30A, (1999), pp. 1625-1633. 41.M. M. Guzowski, G. K. Sigworth and D. A. Senter, “The role of boron in the grain refinement of aluminum with titanium”, Metall. Trans., Vol. 18A, (1987), pp. 603-619. 42.H. T. Wu, L. C. Wang and S. K. Kung, “Influence of grain refine master alloys addition on A356 aluminum alloy”, 鑄工, 第29期 (June 1981), pp.10-18. 43.L. F. Mondolfo, Aluminum Alloys: Structure and Properties, London, Butterworth’s, Ltd., (1976), p. 437-439. 44.M. Easton and D. StJohn, “Grain refinement of aluminum alloys: part I. The nucleant and solute paradigms-a review of the literature”, Metall. Mater. Trans. A, Vol. 30A, (1999), pp. 1613-1623. 45.M. Johnsson and L. Bäckerud, Z. Metallkd., Vol. 87, no. 3, (1996), pp. 216-220. 46.G. K. Sigworth, S. Shivkumar and D. Apelian, “The influence of molten metal processing on mechanical properties of cast Al-Si-Mg alloys”, AFS Trans., Vol. 139, (1989), pp. 811-824. 47.P. S. Mohanty and J. E. Gruzleski, “Mechanism of grin refinement in aluminum”, Acta Metall. Mater., Vol. 43, pp. 2001-2012. 48.Robert E. Read-Hill, “Physical Metallurgy Principles”, 3rd ed., (1992), pp.192-193. 49.L.F. Mondolfo, “Aluminum Alloys: Structure and properties”, London, Butterwordths and Co. Ltd., (1976), pp. 693-724. 50.F.R. Mollard, “Influence of Chemical Composition and Heat Treatment on Properties of KO-1 Alloy”, AFS Trans., Vol. 79, (1970), pp. 443-449. 51.S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita, T.G. Langdon, “Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al—Mg alloys”, Acta Mater., Vol. 50, (2002), pp. 553—564. 52.John E. Hatch, Aluminum: Properties and Physical Metallurgy, ASM International, Metals Park, Ohio, (1984), pp. 234-235. 53.S. Murali, K. S. Raman and K. S. S. Murthy, “Effect of trace additions (Be, Cr, Mn and Co) on the mechanical properties and fracture toughness of Fe-containing Al-7Si-0.3Mg Alloy”, Cast Metals, Vol. 6, (1994), pp. 189-198. 54.G. Gustafsson, T. Thorvaldsson, and G. L. Dunlop, “The influence of Fe and Cr on the microstructure of cast Al-Si-Mg alloys”, Metall. Trans. A, Vol. 17A, (1986), pp. 45-52. 55.L. F. Mondolfo, Aluminum Alloys: Structure and Properties, London, Butterworth’s, Ltd., (1976), p. 576. 56.Y. H. Tan, S. L. Lee and Y. L. Lin, “Effects of Be and Fe additions on the microstructure and mechanical properties of A357.0 alloys”, Metall. and Mater. Trans. A, Vol. 26A, (1995), pp. 1195-1205. 57.Y. H. Tan, S. L. Lee and Y. L. Lin, “Effects of Be and Fe content on plane strain fracture toughness in A357 alloys”, Metall. Mater. Trans. A, Vol. 26A, (1995), pp.2937-2945. 58.P.S. Warng, Y.J. Liauh, S.L. Lee and J.C. Lin, “Effects of Be Addition on Microstructures and Mechanical Properties of B319.0 Alloys”, Materials Chemistry and Physics, Vol. 53, (1998), pp. 195-202. 59.L. A. Narayanan, F. H. Samuel and J. E. Gruzleski, “Crystallization behavior of iron-containing intermetallic compounds in 319 aluminum alloy”, Metall. and Mater. Trans. A, Vol. 25A, (1994), pp. 1761-1773. 60.Y. Shimizu, Y. Awano and M. Nakamura, Paper presented at 96th casting congress, Milwaukee, WI, (1992), AFS no. 92-135. 61.Yoshihiro Shimizu, Yoji Awano and Motoyuki Nalamura, “Heating in the solid liquid coexisting temperature range for improvement of the impact strength of Al- Si- Cu alloy castings”, 輕金屬, Vol. 40, (1990), pp. 409-415. 62.Y. Shimizu, Y. Awano and M. Nakamura, “New solution treatment for Al-Si-Cu alloy castings at non-equilibrium eutectic melting temperatures”, 輕金屬, Vol. 38, (1988), pp. 202-207. 63.P.S. Wang, S.L. Lee, J.C. Lin and M.T. Jhan, “Effects of solution temperature on mechanical properties of 319.0 aluminum casting alloys containing trace beryllium”, J. Materials Research, Vol. 15, (2000), pp. 2027-2035. 64.L. F. Mondolfo, Aluminum Alloys: Structure and Properties, London, Butterworth’s, Ltd., (1976), pp. 253-266, p. 635. 65.L. Bäckerud, G. Chai, J. Tamminen, Solidification Characteristics of Aluminum alloys, AFS/SKAN ALUMINUM, Vol. 2, (1990), pp. 63-67. 66.L. F. Mondolfo, Aluminum Alloys: Structure and Properties, London, Butterworth’s, Ltd., (1976), p. 283, p. 491, pp. 534-536. 67.C.G. Cordovilla, E. Louis, “Characterization of the microstructure of a commerical Al-Cu alloy (2011) by differntial scanning calorimetry (DSC)”, J. Material science, Vol. 19, (1984), pp. 279-290. 68.Metal Handbook, ASM, Vol. 8, pp. 262, (1980), p. 262. 69.L. F. Mondolfo, Aluminum Alloys: Structure and Properties, London, Butterworth’s, Ltd., (1976), p. 324, pp. 505-506. 70.I.J. Polmear, Light alloys (Metullurgy and Materials Science), Edward Aronld Ltd., (1982), Ch. 2, pp. 15-46. 71.D.L. Robinson and M.S. Huter, “Interrelation of TEM Microstructure, Composition, Tensile Properties, and Corrosion Resistance of Al-Cu-Mg-Mn Alloys”, Metall. Trans., Vol. 3, (1972), pp. 1147-1155. 72.劉國雄、林樹均、李勝隆、鄭晃中、葉均蔚編著:工程材料科學,全華圖書,p. 328-332. 73.劉國雄、葉均蔚:“高強力鋁合金之熱處理-析出硬化”,金屬熱處理, 14期(1985), pp. 1-28. 74.D. Apelian, S. Shivkumar and G. Sigworth, “Fundamental aspects of heat treatment of cast Al-Si-Mg alloys”, AFS Trans., Vol. 89-137, pp. 727-743. 75.J. Gauthier, P. R. Louchez and F. H. Samuel, “Heat treatment of 319.2 aluminum automotive alloy, part 1, solution heat treatment”, AFS Int. Cast Metals, Vol. 8, (1995), pp. 91-106. 76.L. A. Naraynan, F. H. Samuel and J. E. Gruzleski: “Dissolution of iron intermetallics in Al-Si alloys through nonequilibrium heat treatment”, Metall. Mater. Trans. A, Vol. 26A, (1995), pp. 2161-2174. 77.L. E. Marsh and G. Reinenann, AFS Trans., Vol. 87, (1979), pp. 413-422. 78.L.F. Mondolfo, Aluminum Alloys: Structure and properties, Butterwordths, London, 1976, p. 497-504. 79.J.M. Papazian, “Calorimetric Studies of Precipitation and Dissolution Kinetics in Aluminum Alloys 2219 and 7075”, Metall. Trans. A, Vol. 13, (1982), pp. 761-769. 80.M.J. Starink, P.V. Mourik, “Calorimetric Study of Precipitation an Al-Cu Alloy with Silicon Particles”, Metall. Trans. A, Vol. 22A, (1991), pp. 665-674. 81.“Aerospace Material Specification”, AMS 4235A, AMS4236 (1987). 82.K. Hono, N. Sano, S. S. Babu, R. Okano and T. Sakurai, “Atom probe study of the precipitation process in Al-Cu-Mg-Ag alloys”, Acta Metall. Mater., Vol. 41, (1993), pp. 829-838. 83.B.C. Muddle and I.J. Polmear, “The PrecipitateΩphase in Al-Cu-Mg-Ag Alloys”, Acta Metall., Vol. 37, (3), (1989), pp. 777-789. 84.J.M. Silcock, B.Sc., “The Structural Ageing Characteristics of Al-Cu-Mg Alloys with Copper: Magnesium Weight Ratios of 7 : 1 and 2.2 : 1”, J. Inst. Metals. Vol. 89, (1960), pp. 203-210. 85.David Broek, The Practical Use of Fracture Mechanics, Kluwer Academic Publishers, (1988), pp. 48-86. 86.G. R. Irwin, Fracture Dynamics in Fracturing Of Metals, American Society of Metals, Cleveland, (1948). 87.ASM Handbook, Vol. 19, Fatigue and Fracture, Materials Park, Ohio, (1996), p.565-588. 88.H. O. Fuchs and R. I. Stephens, Metal Fatigue in Engineering, April (1980), p. 48-52. 89.Julie A. Bannantine, Jess J. Comer and James L. Handrock, Fundamentals of metal fatigue analysis, Prentice Hall, New Jersey, (1990), pp. 88-114. 90.D. N, Lal, A new mechanistic approach to analysing LEFM fatigue crack growth behaviour of metals and alloys. Eng. Frac. Mech., Vol.47, No.3, (1994), pp.379-401. 91.J. C. Russ, Practical Stereology, Plenum Press, New York, (1986), p. 35-51. 92.ASTM B557-84, Annual Book of ASTM Standards, Vols. 03.01 and 02.02. 93.ASTM E8-89b, Annual Book of ASTM Standards, Vol. 03.01. 94.G. Petzow, and G. Effenberg, Ternary alloys (NY, VCH, New York, 1991), Vol. 4, p. 573. 95.A.K. Jena, A. K. Gupta, and M. C. Chaturvedi, “A differential scanning calorimetric investigation of precipitation kinetics in the Al-1.53 wt% Cu-0.79 wt% Mg alloy”, Acta Metall. Vol. 37, (1989), pp. 885-895. 96.G. Biroli, G. Caglioti, L. Martini and G. Riontino, “Precipitation kinetics of AA4032 and AA6082: A comparison based on DSC and TEM”, Scripta Mater., Vol. 39, no. 2, (1998), pp. 197-203. 97.S. Suresh, T. Christman and Y. Sugimura, “Accelerated aging in cast Al alloy-SiC particulate composites”, Scripta Metall., Vol. 23, (1989), pp. 1599-1602. 98.J. Miyake, G. Ghosh, M.E. Fine, “Design of high-strength, high-conductivity alloys”, MRS Bull. Vol. 21, (1996), pp. 13-18. 99.J.Y. Barghout, G.W. Lorimer, R. Pilkington, and P.B. Prangnell, “Effects of second phase particles, dislocation density and grain boundaries on the electrical conductivity of aluminum alloys”, Mater. Sci. Forum, Vol. 217-222, (1996), pp. 975-980. 100.J. T. Staley, "Microstructure and toughness of high-strength aluminum alloys" Properties Related to Fracture Toughness, ASTMSTP 605, Am. Soc. Testing Mats., (1976), pp.71-l 03. 101.J. H. Mulherin and H. Rosenthal, “Influence of nonequilibrium second-phase particles formed during solidfication upon the mechanical behavior of an aluminum alloy”, Metall. Trans. Vol. 2. Feb (1971), pp. 427-432. 102.T. Kobayashi, “Strength and fracture of aluminum alloys”, Mater. Sci. Eng., Vol. A280, No.1, (2000), pp. 8-16. 103.H. CAI, J.T. Evans and N.T.H. Holroyd, "Unstable crack extension in high strength aluminum alloy", Acta Metal., Vol. 39, No. 10, (1991), pp.2243-2250. 104.Jien-Wei Yeh, "A Study Relating to the Enhancement of Transgranular Fracture by Iron in Al-Zn-Mg Alloys", Scripta Metall., Vol. 20, (1986), pp. 329-334. 105.D.S. Thompson and S.A. Levy: AFML-TR-70-171, Wrigth-Patterson AFB, Ohio, (1970). 106.Manabu Nakai, Takehiko Eto, “New aspects of development of high strength aluminum alloys for aerospace applications”, Mater. Sci. Eng., Vol. A285, (2000), pp. 62—68. 107.Meng L. and Zheng X. L., “Effect of Cerium and impurities on fatigue and fracture properties of 8090 alloy sheets”, Scripta Metall. Mater., Vol. 33, No. 1, (1995), pp.27-31. 108.S. Suresh, A.K. Vasudevan and P.E. Bretz, “Mechanism of slow fatigue crack growth in high strength aluminum alloys: Role of microstructure and environment”, Metall. Trans. Vol. 15A, (2), (1984), pp.369-379. 109.T. Kobayashi, “Strength and fracture of aluminum alloys”, Mater. Sci. Eng., Vol. A280, No. 1, (2000), pp. 8-16. 110.T.S. Srivatsan and D.L.Jr, “Microstructure, tensile properties and fracture behaviour of an Al-Cu-Mg alloy 2124”, J. Mats. Sci., Vol. 28, (1993), pp.3205-3213. 111.M.J.Couper, A.E.Neeson and J.R.Griffiths, “Casting deflects and the fatigue behaviour of an aluminum casting alloy”, Fat. Frac. Eng. Mat. Str., Vol.13, (1990), pp-213-227. 112.A.A. Dabayeh, R. X. Xu, B. P. Du and T.H. Topper, “Fatigue of cast aluminium alloys under constant and variable-amplitude loading”, International Journal of Fatigue Vol. 18, No. 2, Feb., (1996), pp. 95-104. 113.S. Murali, T.S. Arvind, K.S. Raman and K.S.S. Murthy, “Fatigue properties of sand cast, stircast and extruded Al-7Si-0.3Mg alloy with trace additions of Be and Mn”, Materials Trans., JIM, Vol. 38, No. 1, (1997), pp. 28-36. 114.M. Jain, “TEM study of microstructure development during low-cycle fatigue of an overaged Al-Mg-Si alloy”, J. Mater. Sci., Vol.27, (1992), pp.399-407. 115.H. Egashira, M. Niinomi, T. Kobayashi and S. Kohmura, “Effects of metallurgical factors on the fatigue crack propagation characteristics in high-purtity Al-Si casting alloys”, J. Japan Inst. Light Metals, Vol. 39, No.12, (1989), pp.878-885. 116.Y. H. Tan, S. L. Lee and H.Y. Wu, “Effects of beryllium on fatigue crack propagation of A357 alloys containing iron”, Int. J. Fatigue, Vol. 18, No. 2, (1996), pp.137-147. 117.ASTM E399-90, Annual Book of ASTM Standards, Vol. 03.01. 118.ASTM E647-88a, Annual Book of ASTM Standards, Vol. 03.01. 119.R. F. Smith and P. Doig, “Crack length measurement by compliance in fracture toughness testing”, Experiments Mechanics, June (1986), pp. 122-127.
|