跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/12 18:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉柏青
研究生(外文):Po-Ching Yeh
論文名稱:微陽極引導電鍍與監測
論文名稱(外文):Microanode Guided Electroplating (MAGE) and its Monitoring
指導教授:林景崎
指導教授(外文):Jing-Chie Lin
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:147
中文關鍵詞:微製造.微陽極引導電鍍鎳微結構
外文關鍵詞:Microanode Guided Electroplatingnickel columnmicrofabrication.
相關次數:
  • 被引用被引用:16
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0

微陽極引導電鍍(MAGE)可在含鎳的鍍浴中,製造三維的鎳微結構。在本研究中,使用125μm 的鉑微陽極,經樹脂鑲埋後,在拋光銅基材上,引導局部電鍍的進行。在實驗過程中,控制兩極電壓強度與波形,以及兩極之間的間距,進行微陽極引導電鍍,並對析鍍過程中的電壓電流的變化進行監測。待微結構析鍍完畢後,以電子顯微鏡(SEM)觀察析鍍鎳微結構的表面與截面。在本研究中亦探討了微陽極引導電鍍(MAGE)的起鍍條件,並找出適當的析鍍條件。在兩極間距為10μm情形下,如果析鍍速率低於0.02μm/s時,析鍍速率太慢可視為不適合用於微陽極引導電鍍。另一方面,當電壓大於6.6V時,雖然析鍍速率增加至0.667μm/s,但是析鍍物的表面會變得粗糙。
結果顯示,不同電場情形下,表面型態與截面結構都有所不同,當析鍍電壓為6V間距為10μm時,微結構表面將會十分平滑,且內部為實心結構。當析鍍電壓升至7V以上,則微結構表面會變得粗糙且內部亦出現空孔結構。在實驗進行中,進行即時的電壓與電流監測,所得的數據將有助於微電鍍結果的分析。除了表面與截面的觀察之外,本研究亦探討了微鎳柱的電化學性質,結果顯示,在間距為10μm情形下,相較於7.4V析鍍的鎳微結構,6V電壓下析鍍的鎳微結構,有較好的抗腐蝕性質。


Microanode guided electroplating (MAGE) has been used to fabricate a three-dimensional microscale nickel column in nickel-containing baths. A Pt wire (125μm in diameter) was mounted with epoxy resin to expose a tip to act as a microanode that was moved to guide localized electroplating on a polished copper surface. Parameters, such as the dc-voltage bias, the waveforms of the bias and the gap between the electrodes were explored.
In this work, the morphology on the top-view and cross-section of the microclumn was examined using scanning electron microscope (SEM). Current or potential was monitored when MAGE was performed in different conditions controlled by varying the experimental parameter. The threshold strength of the electric field to start deposition for the MAGE process was found out. In an inter-electrode gap of 10μm, the deposition rate of the MAGE process was too slow (<0.02μm/s) to put in use. On the other hand, the deposition rate could increase to 0.667μm/s when the applied voltage reached 6.6V, but the surface morphology of the columns deposited was very rough.
The surface morphology and internal structure of the micro-columns deposition by MAGE process were determined by the strength of electric field. The nickel micro-columns prepared by MAGE at applied voltage 6V with an inter-electrode gap of 10μm was smooth in surface morphology and filled density in the internal structure. The surface morphology became rougher and few pores were involved in the internal structure when the applied voltage increased to 7V. The higher the applied voltage the rougher in surface morphology and the greater pores size and number in the internal structure.
Current and voltage in the MAGE process was in-situ monitored. The monitored data were useful for further adjustment to obtain nickel columns in high quality.
Electrochemical impedance spectroscopy and polarization resistance were investigated to examine the corrosion behavior of the nickel micro-columns prepared by MAGE process. The nickel micro-columns prepared at 6V with 10μm were more resistant to corrosion than that prepared at 7V with the same inter-electrode gap.


Contents
Abstract I
Acknowledgement Ⅲ
Contents Ⅳ
List of Tables Ⅷ
List of Figures Ⅸ
Chapter 1 Introdction1
1.1.What is Microanode Guided Electroplating (MAGE)?1
1.2.Why MAGE?1
1.2.1. The LIGA procedure2
1.2.2. Advantages taken by MAGE over than LIGA process3
1.3. Goals of this work4
Chapter 2 Literature Survey and Fundamental Theory5
2.1.Literature survey5
2.1.1. Micro-fabrication technologies5
2.1.2. Localized electrochemical deposition5
2.1.3 Microanode-guide electroplating (MAGE)7
2.2. Principles and Fundamental Theories9
2.2.1. Electrode Kinetics of Bulk Electrochemical reactions9
2.2.1.1. Kinetics of Interfacial Charge Transfer9
2.2.1.2Mass Transfer Controlled Current Potential Curves 10
2.2.1.3. Reaction Controlled Current Voltage Curves 12
2.2.1.4.Combined Activation and Mass Transport Control 12
2.2.2.Mass Transport of Bulk Solution 14
2.2.2.1. Diffusion 14
2.2.2.2. Convection 14
2.2.2.3. Migration 15
2.2.2.4. Nernst plank equation 17
2.2.3. Microelectrode 17
2.2.3.1. What is a microelectrode? 18
2.2.3.2. Micro- and Macrokinetics of Electrochemical Reactions 19
2.2.3.3. Properties and Advantages of Microelectrodes 20
2.2.3.4. Experimental aspects of Microelectrodes 26
2.3.Electric field consideration 27
2.3.1. The electric field 27
2.3.2. The electric potential 28
2.3.3. Lines of force 29
2.4.Electrochemical Examination 31
2.4.1. Linear Polarization 31
2.4.2. Electrochemical Impedance Spectroscopy (EIS) 32
Chapter 3 Experimental Details 35
3.1. Setup of experiment 35
3.1.1.Experimental Preparations 35
3.1.1.1. Anode preparation 35
3.1.1.2. Cathode preparation 35
3.1.1.3. Electrolyte 36
3.1.2. Guiding apparatus 37
3.1.2.1 Personal computer 37
3.1.2.2. Deposition and movement controlling card 37
3.1.2.3. Step motion motor 38
3.1.2.4. Direct current (DC) power supply 38
3.1.3. Bath heating and circulating systems 38
3.2. Experimental process 39
3.2.1. Performance of MAGE process to fabricate the nickel micro-columns. 39
3.2.2. Surface morphologies and cross-section observation 41
3.2.3. In-situ recording of data 41
3.2.4. Deposition model and electric field simulation 41
3.2.5. Electrochemical Examination 42
3.2.5.1 EIS measurement 43
3.2.5.2 Linear polarization 43
Chapter 4 Results 44
4.1. The nickel column deposited by MAGE 44
4.1.1. Effect of applied voltage on the SEM morphologies of the nickel micro-columns 44
4.1.2. Effect of inter-electrode gap on the SEM morphologies of the nickel micro-columns 47
4.2. The in-situ measurement result using Pt-wire as reference electrode 48
4.3. The growth rate of Ni micro-column 48
4.3.1. Effect of bias on the growth rate of Ni micro-column 48
4.3.2. Effect of inter-electrode gap on the growth rate of Ni micro-column 50
4.4. The pulse MAGE 50
4.5. The electrochemical properties of nickel column 514.5.1.Electrochemical impedance spectroscopy (EIS) results 52
4.5.2. Linear polarization results 52
Chapter 5 Discussion 54
5.1. Parameters related to the threshold of MAGE 54
5.1.1. The electric field on the threshold of MAGE 54
5.1.2. Bias needed on the threshold of MAGE 55
5.2. Dependence of the micro-column morphology on the parameters of MAGE 56
5.2.1. The effect of applied voltage on the column
morphologies. 57
5.2.2. The effect of inter-electrode gap on the column morphologies. 57
5.2.3. The effect of growth rate on the column cross-section. 61
5.3. The possibility of Pt-wire used as local reference electrodes. 62
5.3.1. Electrode potentials measured against reference electrodes SCE and Pt. 62
5.3.2. Effect of cathode area on the electrode potential measured against SCE and Pt. 64
5.4. Advantages of pulse MAGE. 66
5.5. The effect of morphologies on properties of nickel column. 67
Chapter 6 Conclusions 68
Chapter 7 Future Work 70
References 71


References
[O. David]Odde, David J.; Renn, Michael J. “Laser-guided direct writing for applications in biotechnology, Trends in Biotechnology,” Volume: 17, Issue: 10, October 1, 1999, pp. 385-389.
[Milewski]Milewski, J.O.; Lewis, G.K.; Thoma, D.J.; Keel, G.I.; Nemec, R.B.; Reinert, R.A. “Directed light fabrication of a solid metal hemisphere using 5-axis powder deposition,” Journal of Materials Processing Technology, Volume: 75, Issue: 1-3, March 1, 1998, pp. 165-172
[Juntao]Juntao Xu, Sheila A. Grant, and Robert L. Pastel, “ Laser-Guided Direct Writing: A Novel Method to Deposit Biomolecules for Biosensors Arrays,” IEEE Transactions On Biomedical Engineering, Vol. 50, No. 1, January 2003
[J.A. Kan]J.A. van Kan, J.L. Sanchez, B. Xu, T. Osipowicz, F. Watt, “Micromachining using focused high energy ion beams: Deep Ion Beam Lithography,” Nuclear Instruments and Methods in Physics Research B 148 (1999) 1085-1089
[P. Bley]P. Bley,“ The Liga Process for Fabrication of Three- Dimensional Microscale Structures ”, Interdisciplinary Science Reviews, Vol. 18, No. 3, (1993) pp. 267-272.
[Hemker]Hemker, K.J, Last, H., Microsample tensile testing of LIGA nickel for MEMS applications, Materials Science and Engineering: A Volume: 319-321, December, 2001, pp. 882 - 886
[Yang]Yang, Hsiharng; Kang, Shung-Wen, Improvement of thickness uniformity in nickel electroforming for the LIGA process, International Journal of Machine Tools and Manufacture Volume: 40, Issue: 7, May, 2000, pp. 1065-1072
[Physik]Lambda Physik, "Laser LIGA-Excimer Laser Microstructuring and Replication", Lambda Highlights No45, August 1994。
[Abraham]M. Abraham, J. Arnold, W. Ehrfeld, K. Hesch, H. Mobius, T. Paatzsch, C. Schulz, "Laser-LIGA: A Cost Saving Process for Flexible Production of Micro-structures", SPIE, Vol. 2639, 1995, pp.164-173 。
[van Kan]J.A. van Kan, J.A.; Sanchez, J.L.; Xu, B.; Osipowicz, T.; Watt, F., Micromachining using focused high energy ion beams: Deep Ion Beam Lithography, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms Volume: 148, Issue: 1-4, January 2, 1999, pp. 1085-1089
[Vasile]M.J. Vasile, R. Nassar, J. Xie, H. Guo, Microfabrication techniques using focused ion beams and emergent applications Micron 30 (1999) 235—244
[Konishi]Satoshi Konishi, Kazuhiro Honsho, Masashi Yanada, Isao Minami, Yukie Kimura, Shinji Ikeda, Direct drawing method for microfabrication based on selective metal plating technology, sensors and actuators A 103 (2003) 135-142
[Schwarzacher]W. Schwarzacher, O.I. Kasyutich, P.R. Evans, M.G. Darbyshire, Ge Yi,V.M. Fedosyuk, F. Rousseaux, E. Cambril, D. Decanini, Metal nanostructures prepared by template electrodeposition ,Journal of Magnetism and Magnetic Materials 198-199 (1999) 185-190
[Kovtyukhova]N.I. Kovtyukhova , B.R. Martin J.K.N. Mbindyo T.E. Mallouk M. Cabassi T.S. Mayer, Layer-by-layer self-assembly strategy for template synthesis of nanoscale devices, Materials Science and Engineering C 19 2002 255-262
[Pede]Danilo Pede, Giorgio Serra, Danilo De Rossi, Microfabrication of conducting polymer devices by ink-jet stereolithography materials science and engineering C 5 (1998) 289-291
[Hunter] Madden J D and Hunter I W, Three-dimensional microfabrication by localized electrochemical deposition J. Microelectromech. Syst 1996. 5 24—32
[El-Giar] El-Giar E M and Thomson D J, Localized electrochemical plating of interconnectors for microelectronics Proc. IEEE Conf. Communications, Power and Computing WESCANEX 97 1997. pp 327—32
[C.C. Chen] 陳承志, 銅基材上之單軸微電析鎳製程研究 1999 中華民國國立中央大學機械工程學系碩士論文
[A. Jan] Anders Jansson, Greger Thornell, and Stefan Johansson High, Resolution 3D Microstructures Made by Localized Electrodeposition of Nickel J. Electrochem. Soc. 2000, 147 (5) 1810-1817
[S.P. You] 游絢博,陽極單軸間歇運動下之直流、脈衝微電析鎳 2000 中華民國國立中央大學機械工程學系碩士論文
[R.W. You] 游睿為, 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析 2001中華民國國立中央大學機械工程學系碩士論文
[Yeo 1]Yeo S H and Choo J H, Effects of rotor electrode in the fabrication of high aspect ratio microstructures by localized electrochemical deposition J. Micromech. Microeng. 2001 11 435—42
[Yeo 2] Yeo S H and Choo J H, On the effects of ultrasonic vibrations on localized electrochemical deposition J. Micromech. Microeng. 2002,11 271—279
[Wallenberger]F. T. Wallenberger and M. Boman, Composite Science and Technology, 51, 193 (1994).
[K. Ikuta]K. Ikuta, K. Hirowatari and T. Ogata, in Proc. IEEE Micro Electro Mechanical Syst., Oiso, Japan, pp. 1-6 (1994).
[M. Boman]M. Boman and H. Westberg, in Proc. IEEE Micro Electron Mechanical Syst., Travemunde, Germany, pp. 162-167 (1992)
[D. L. Lee]Dong-Liang Lee, Master thesis of National Central University at Mechanical Engineering Graduate School, 1995.
[J. C. Lin]J.C. Lin, S. B. Jiang, D. L. Lee, C. C. Chen, Proceedings for the 2nd Conference on Micro-meter Engineering and Nano-technology, Hsin-Chu Taiwan, April 1998, p.2-73, 1998.
[S. B. Jiang]S. B. Jiang, J. C. Lin, D. L. Lee and C. C. Chen, Proceedings for the 11th Auotomatic Science and Technology in Taiwan, pp.735-739 (1999),
[D. L. Lee2]Dong-Liang Lee, Shyh-Biau Jiang, Jing-Chie Lin, Cheng-Chih Chen, Proccedings for Automation 2000.
[S. F. Lee]S. F. Lee, S. K. Liao, T. L. Yeh, S. B. Jiang and J. C. Lin, Proceedings on the 19th Annual Meeting of Chinese Mechanical Engineering Society, No. E1-010 (2001).
[Lowenheim1]Lowenheim, Frederick Adolph, Modern electroplating, New York ; Wiley , 1974
[Lowenheim2] Lowenheim, Frederick Adolph, Electroplating /sponsored by the American Electroplaters' Society, New York ; McGraw-Hill , c1978 1978
[Raub]E. Raub and K. Muller, Fundamentals of Metal Deposition. New York;Elsevier, 1967, p. 46
[Hamann]Carl H. Hamann, Andrew Hamnett, Wolf Vielstich.1998, Electrochemistry, Weinheim ; New York : Wiley-VCH.
[Bard]A. J. Bard, R.Faulkner, Electrochemical Methods in Electrochemistry, John Wiley& Sons, Inc.,2001
[Budevski] W. Budevski, M. Fleischmann, C. Gabrielli and M. Labram, Electrochim. Acta, 28 (1983) 925.
[Montenegro] M. Irene Montenegro, M. Arlete Queiros, John L. Daschbach, Why microelectrodes? Microelectrodes: Theory and Application, London : Kluwer Academic Publishers. 1991.
[Alvaro]Alvaro J. Ribes, Janet Osteryoung, Experimental Aspects of Electrochemistry at Microelectrodes, Microelectrodes: Theory and Application, P259- P265, London : Kluwer Academic Publishers. 1991.
[L. Eyges]Leonard Eyges, The classical electromagnetic field, New York : Dover Publications , 1980, c1972
[Y. K. Lim]Y.K. Lim, Introduction to classical electrodynamics / Singapore Philadelphia, PA ; World Scientific , c1986
[B. S. Guru]Bhag Singh Guru and Huseyin R. Hiziroglu, Electromagnetic field theory fundamentals. Boston ; PWS Pub., c1998.
[H. Benson] Harris Benson, University physics, New York ; J. Wiley , c1991
[Denny]Denny A. Jones; Principles and prevention of corrosion; Prentice Hall, Upper Saddle River, 1996.
[ASTM]Standard Practice for Conducting Potentiodynamic Polarization Resistance Measurements, Annual Book of ASTM standard, G59 — 78. 1998
[Dibari]George A. Dibari, “Nickel plating baths”, Metal Finishing, Volume: 93 , pp. 259-279. 1995.
[Dennis]J.K. Dennis and T.E. Such, Nickel and chromium plating, Woodhead pulishing Ltd., Cambridge England. 1993
[William]William D. Callister, Jr. Materials Science and Engineering An Introduction, New York; John Wiley & Sons, Inc. 1999.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top