跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/18 00:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李佳豪
研究生(外文):Jia-Hao Lee
論文名稱:液態紊流噴流動能消散率場與微尺度間歇性之定量量測
論文名稱(外文):Quantitative Measurements of Kinetic Energy Dissipation Rate and Fine Scale Intermittency of An Aqueous Turbulent Jet
指導教授:施聖洋
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:105
中文關鍵詞:延伸自相似律平坦度因子動能消散率微尺度結構與間歇性標度指數
外文關鍵詞:flatness factorthe scaling exponentextended self-similaritythe kinetic energy dissipation ratesmall-scale structures and intermittency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0

本研究是應用四維質點影像測速技術,定量量測一液態紊流噴流場之空間三維速度場與其時間序列資訊,並計算紊流動能消散率與應變率場,配合小波函數轉換(wavelet transform),來獲得紊流噴流場的平坦度因子(flatness factor)與延伸自相似率(extended self-similarity, ESS)的特性,以分析紊流噴流場的微尺度結構與間歇性 (small-scale structures and intermittency)的分佈特性。從所得速度場資訊,可進一步地計算紊流場的渦度(vorticity)、主應變率方向(principle strain rate direction)以及動能消散率場,並分析紊流噴流場的微尺度結構。結合小波轉換可獲得平坦度因子,可用以判斷紊流場之間歇性程度。經由所計算之平坦度因子,得知紊流噴流微尺度渦結構之特性時間尺度約 ,特性空間尺度約 , 和 為Kolmogorov時間與空間尺度。本實驗室所發展之四維質點影像測速技術,確實可以在紊流噴流場中,解析到噴流場中空間與時間的Kolmogorov尺度,由實驗證實微尺度結構乃由高動能消散率的特定結構所形成,且其分佈具有高度的間歇性,另外高動能消散率值的部分,只佔所量測空間中約3~5 %的比例。
將紊流噴流三維的速度場,經由ESS的特性分析後,比對其時間與空間的速度資料後,可發現無論在何種情形下,在噴流方向標度指數(scaling exponent)的斜率值,比其他兩個水平方向的斜率值還低,尤其是在時間序列的速度資料中特別明顯,這結果與Romano & Antonia (2001)在紊流噴流場中,計算低階(2階到8階)速度結構函數(velocity structure function)之結果相似,但是在高階處(10階到20階),將速度結構函數之斜率值與Kolmogorov (1941)之理論(簡稱K41)、Kolmogorov於1962年修正後之log-normal紊流模式、Frisch et al. (1978)的 紊流模式以及She & Leveque (1994)的SL紊流模式等四大模式做一比對,發現所得斜率均介於紊流 模式與SL模式的值之間。由實驗分析結果,可知沿著噴流方向,紊流噴流場其間歇性的程度,會隨著越遠離噴嘴其間歇程度會增加,而以 模式與SL模式兩間歇性模式,較為接近紊流噴流場的微尺度間歇性的結構分佈。經過空間微尺度拓撲結構的對照之後,可以發現在噴流場的微尺度結構大部分為“斑點(spotty)”結構,而“似線(line-like)”以及“似面(sheet-like)”結構在噴流場中則較為少數,這一點與Tsurikov & Clemens (2002)於氣態的同軸噴流場(co-flow)所發現的結果有所不同。本研究將有助於新紊流間歇性模式的發展,並進一步瞭解紊流場中微尺度結構的分佈情形。


This thesis uses a four-dimensional particle image velocimetry (4D-PIV) technique to measure quantitatively full spatial and temporal velocity data fields of a turbulent jet in a water tank for investigating fine scale structure of turbulence based on the turbulent kinetic energy dissipation rate fields. Applying the wavelet transformation to calculate the flatness factor and the extend self-similarity (ESS) from these PIV data, we are able to evaluate small-scale structures and intermittency of turbulent jet. From these flatness factor calculations, it is found that the characteristic temporal and spatial scales of small intense vortical structures are on the order of and , where and are the Kolmogorov time and length scales, respectively. These 4D-PIV measurements can also provide the corresponding vorticity fields, the principle strain rate directions, and the kinetic energy dissipation rate fields. Thus, the fine scale structures of the turbulent jet can be identified from these kinetic energy dissipation rate fields. The present 4D-PIV technique which has been developed in our laboratory can resolve the Kolmogorov scales of the turbulent jet. It is found that the distribution of fine scale structures of the turbulent jet in which highest values of the dissipation rate are concentrated has a very high degree of intermittency and only occupies about 3~5% in the whole measuring data volume at any given times.
We also analyze these PIV data using the ESS method to investigate the scaling exponent based on high-order velocity structure functions. For both temporal and spatial velocity data, we found what the scaling exponent of high-order velocity structure function in the axial direction is lower than that in the other two transverse directions. We compare our scaling exponent results with four different models, respectively the Kolmogorov model in 1941 (K41), the log-normal model (Kolmogorov 1962), the model (Frisch et al. 1978), and the SL model (She & Leveque 1994). It is found that our experiment results are in between the model and the SL model. The level of intermittency on the turbulent jet in the far field is increasing with the distance away the jet nozzle. From fine scale topological structures of kinetic energy dissipation rate fields, it is found that the spotty-like structure is the main structure of the present turbulent jet in the far field. However, both line-like and sheet-like structure are also observed. These results may be useful to understand fine scale structures of turbulence.


目 錄
摘要……………………………………………………...……………………I
英文摘要………………………………………………….………………...II
誌謝………………………………………………………...……………….III
目錄…………………………………………………...…………………….IV
圖表目錄…………………………………………………..……………….VI
符號說明…………………………………………………..……………….IX
第一章 前言………………………………………………………………..1
1.1 動機…………………………………………………………………1
1.2 問題所在……………………………………………………………3
1.2.1 全場速度量測與分析問題………………………………….3
1.2.2 紊流微尺度與間歇性……………………………………….4
1.3 解決提案……………………………………………………………6
1.4 論文概要……………………………………………………………7
第二章 文獻回顧………………………………………………………….8
2.1 紊流噴流場之特性………………………………………………...8
2.2 質點影像測速技術………………………………………………...9
2.3 小波轉換理論………………………………….…………………13
2.4動能消散率理論…….……………………………………………16
2.5 微尺度間歇性理論……….………………………………………19
第三章 實驗方法與步驟………………………….……………….…...24
3.1紊流噴流實驗設備………………………………………………24
3.2實驗操作條件……...…………….…………………………....….25
3.3影像擷取系統與同步控制方法……………………….………....27
3.4三維影像校正方法……………………………………………….30
3.5速度場資料處理流程…………………………………………….31
第四章 實驗參數計算與理論分析………………….………...……...40
4.1流場參數應用小波轉換之計算……………….……………..…..40
4.2 渦度場與紊流動能消散率場之計算……...……………………..42
4.2.1 渦度場之計算……………………………………………...42
4.2.2 動能消散率場之計算……………………………………...44
4.3小波轉換理論分析……………………………………………….46
4.3.1 平坦度因子計算……………...……………………….…...46
4.3.2 延伸自相似律計算……………………...…………………48
第五章 結果與討論…………………………………….……………….57
5.1紊流噴流速度場與動能消散率場……….…….…….…………....57
5.2平坦度因子與流場參數…………………………………………...62
5.3 延伸自相似律與微尺度間歇性之分析…………………………..63
5.3.1 延伸自相似律……………………………………………...63
5.3.2微尺度間歇性與微尺度結構之分析………………………65
第六章 結論與未來工作………………………………….……………84
參考文獻……………………………………………………..…………….87


參考文獻
Ashurst, W. T., Kerstein, A. R., Kerr, R. M., and Gibson, C. H., “Alignment of Vorticity and Scalar Gradient With Strain Rate in Simulated Navier-Stokes Turbulence”, Phys. Fluids, Vol. 30, pp. 2343-2353(1987).
Barnhart, D. H., Adrian, R. J., and Papen, G. C., Phase-Conjuage Holographic System for High-Resolution Particle Image Velocimetry, Appl. Opt., Vol. 33, pp. 7159-7170 (1994).
Benzi, R., Ciliberto, S., Baudet, C., and Chavarria, G. R., “On the scaling of three-dimensional homogenous and isotropic turbulence” Phys. D., Vol. 80, pp. 385-398 (1995).
Buch, K. A., and Dahm, W. J. A., “Experimental Study of The Fine Scale Structure of Conserved Scalar Mixing in Turbulent Shear Flows. I. Sc>>1”, J. Fluid Mech., Vol. 317, pp. 21-71 (1996).
Buch, K. A., and Dahm, W. J. A., “Experimental Study of The Fine Scale Structure of Conserved Scalar Mixing in Turbulent Shear Flows. II. Sc~1”, J. Fluid Mech., Vol. 364, pp. 1-29 (1998).
Camussi, R., and Guj, G., “Orthonormal wavelet decomposition of turbulent flows : intermittency and coherent structures” J. Fluid Mech., Vol. 348, pp. 177-199 (1997).
Camussi, R., “Coherent structure identification from wavelet analysis of particle image velocimetry data”, Exp. Fluid, Vol. 32, pp. 76-86 (2002).
Farge, M., “Wavelet Transforms and Their Applications to Turbulence”, Ann. Rev. Fluid Mech., Vol. 24, pp. 395-457 (1992).
Frisch, U., Sulem, P. L. and Nelkin, M., “A simple dynamical model of intermittent fully developed turbulence”, J. Fluid Mech., Vol. 87, pp. 719-736 (1978).
Frisch, U., Turbulence:The Legacy of A. N. Kolmogorov. Cambridge University Press, New York, pp. 120-194 (1995).
Hart, D.P., “High-Speed PIV Analysis Using Compressed Image Correlation,” J. Fluids Eng., Vol. 120, pp.463-470 (1998).
Hart, D. P., “Super-Resolution PIV by Recursive Local-Correlation”, J. Visual., Vol. 10, pp.1-10 (1999).
Hinze, J. O., Turbulence. McGraw-Hill, New York (1975).
Hu, H., Saga, T., Kobayashi, T., Taniguchi, N., and Yasuki, M., “Dual-Plane Stereoscopic Particle Image Velocimetry: System Set-Up and Its Application on a Lobed Jet Mixing Flow”, Exp. Fluids, Vol. 31, pp. 277-293 (2001).
Li, H., Hu, H., Saga, T., Kobayashi, T., and Taniguchi, N., “Application of wavelet vector multi-resolution technique to PIV measurments”, AIAA Paper 2001-0696 (2001).
Kerr, R. M., “Higher-Order Derivative Correlations and the Alignment of Small Scale Structures in Isotropic Numerical Turbulence”, J. Fluid Mech., Vol. 153, pp. 31-58 (1985).
Kolmogorov, A. N.,“The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers”, C. R. Acad. Sci., USSR. 32, pp. 76-86 (1941).
Kolmogorov, A. N.,“A refinement of previous hypothesis concerning the local structure in viscous incompressible fluid at high Reynolds numbers”, J. Fluid Mech., Vol. 13, pp. 82-85 (1962).
Prasad, A. K., and Adrian, R. J., “Stereoscopic Particle Image Velocimetry Applied to Fluid Flows”, Exp. Fluids, Vol. 15, pp. 49-60 (1993).
Prasad, A. K., “Stereoscopic Particle Image Velocimetry”, Exp. Fluids, Vol. 29, pp. 103-116 (2000).
Raffel, M., Willert, C. E., and Kompenhans, J., Particle Image Velocimetry. Springer, New York (1998).
Romano, G. P., and Antoia, R. A., “Longitudinal and Transverse Structure Functions in a Turbulent Round Jet : Effect of Initial Conditions and Reynolds Number” J. Fluid Mech., Vol. 436, pp. 231-248 (2001).
Saarenrinne, P., and Piirto, M., “Turbulent Kinetic Energy Dissipation Rate Estimation From PIV Velocity Vector Fields”, Exp. Fluids, Vol. 20, pp. 300-307 (2000).
She, Z. S., and Leveque, E., “Universal Scaling Laws in Fully Developed Turbulence”, Phys. Rev. Lett., Vol. 72, pp. 336-339 (1994).
Sheng, J., Meng, H., and Fox, R. O., “A Large Eddy PIV Method for turbulence Dissipation rate estimation”, Chem. Eng. Sci., Vol. 55, pp. 4423-4434 (2000).
Shy, S. S., Gee, K. L., and Lee, E. I., “ Three-Dimensional Measurements of Scalar Dissipation Rates in a Zero-Mean-Shear Turblence”, J. Flow Visual. Image Process., Vol. 6, pp. 177-178 (1999).
Siggia, E. D., “Numerical Study of Small Scale Intermittency in Three-Dimensional Turbulence”, J. Fluid Mech., Vol. 107, pp. 375-406 (1981).
Soloff, S. M., Adrian R. J., and Liu Z-C, “Distortion Compensation for Generalized Stereoscopic Particle Image Velocimetry”, Meas. Sci. Technol., Vol. 8, pp. 1441-1454 (1997).
Sreenivasan, K. R., and Antonia, R. A., “The Phenomenology of Small Scale Tubuence”, Ann. Rev. Fluid Mech., Vol. 29, pp. 435-72 (1997).
Stanley, S. A., Sarkar, S., and Mellado, J. P. “A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation”, J. Fluid Mech., Vol. 450, pp. 377-407 (2002).
Stephen, B.P., Turbulent Flow. Cambridge University Press, New York. pp. 96-181 (2000).
Su, L. K., and Clemens, N. T. “Planar Measurements of the Full Three-Dimensional Scalar Dissipation Rate in Gas-Phase Turbulent Flows”, Exp. Fluids, Vol. 27, pp. 507-521 (1999).
Suzuki, Y., “Three-Dimensional Particle Tracking Velocimetry”, In: The Textbook of the Seminar about Three-Dimensional PIV Technique, VSJ-PIV-S2. Visualization Society of Japan, Yokohama, Japan, pp. 79-96 (1999).
Tennekes, H., and Lumley, J. L., A First Course in Turbulence. MIT Press, Cambridge, London (1985).
Townsend, A. A., The Structure of Turbulent Shear Flow. Cambridge University Press, pp. 172-193 (1956).
Tsurikov, M. S., and Clemens, N. T., “The Structure of Dissipative Scales in Axisymmetric Turbulent Gas-Phase Jets”, AIAA Paper 2001-0147(2001).
Tsurikov, M. S., and Clemens, N. T., “Scalar/velocity imaging of the fine scales in gas-phase turbulent jets”, AIAA Paper 2002-0164 (2002).
Van Den Berg, J. C., Wavelets in physics. Cambridge University Press, pp. 9-22 (1999).
Weng, W. G., Fan, W. C., Liao, G. X., and Qin, Jin, “Wavelet-based image denoising in digitial particle image velocimetry”, Signal Process. , Vol. 81, pp. 1503-1512 (2001).
Yang, T. S., and Shy, S. S., “The settling velocity of heavy particles in an aqueous near-isotropic turbulence”, Phys. Fluids, Vol. 15, pp. 868-880 (2003).
Zhou, T., and Antoia, R. A., “Reynolds number dependence of the small-scale structure of grid turbulence” J. Fluid Mech., Vol. 406, pp. 81-107 (2000).
Zhou, T., Pearson, B. R., and Antonia, R. A., “Comparison between temporal and spatial transverse velocity increment in a turbulent plane jet”, Fluid Dyn. Res. , Vol. 28, pp. 127-138 (2001).
葉武洲 “噴流衝擊一密度界面之捲流率量測”,國立中央大學機械工程研究所,碩士論文 (1994)。
朱振球 “噴流穿透密度界面之LDV量測”,國立中央大學機械工程研究所,碩士論文 (1995)。
蔣龍杰 “四維質點影像測速技術與微尺度紊流定量量測”,國立中央大學機械工程研究所,碩士論文 (2002)。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top