跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/05 21:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江正瑋
研究生(外文):Jiang Chen-Wee
論文名稱:應用類神經網路與模糊控制於泵浦量測系統的研究
指導教授:莊漢東莊漢東引用關係
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:76
中文關鍵詞:流體機械模糊控制類神經網路系統鑑別
外文關鍵詞:Fuzzy Controlfluid machinerySystem Identificationneural network
相關次數:
  • 被引用被引用:9
  • 點閱點閱:266
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是以類神經網路之一的倒傳遞網路(Back-propagation network),以及模糊控制(Fuzzy Control)的理論為基礎,應用在非線性的流量控制閥中,用來改善一個泵浦的量測系統的控制。其研究方法是在執行量測控制的動作前,先以類神經網路為基礎來做系統的鑑別,之後再利用模糊控制理論來調整泵浦輸出流量控制閥,以快速完成控制目標值。
泵浦的主要輸出特性是流量和揚程,其特性曲線通常都以兩者來表現出來;在不同馬達轉速之下,便有不同的特性曲線。因此在泵浦量測系統的控制過程當中,就必須要考慮揚程、流量和馬達轉速、控制閥開關大小之間的關係,來進行系統鑑別,並進行控制,經實驗結果,可達到理想的控制效果。
本研究以Visual Basic的程式語言來建構控制系統的環境,另外以Matlab軟體進行類神經網路和模糊理論的運算,並針對所得到的結果加以討論和探討。
This research applies the most extensively-used back-propagation neutral network theory and fuzzy control theory to the hydraulic pump measurement system control. The method of this research is to identify the system on the basis of back-propagation network, and then determine which may approximate the target. Afterward the theory of fuzzy control applies to regulate the system in order to approach the target which is required.
The output characteristics of pump are flow and head, which are two main properties representative of the characteristic curve. Different motor rotation speed contributes to different characteristic curve. Therefore, flow and head of pump''s output should be taken as referent indices during the control process in order to approach the ideal result.
中文摘要__________________________________________________I
英文摘要_________________________________________________ II
致謝_____________________________________________________III
目錄____________________________________________________ IV
圖索引___________________________________________________VI
表索引_________________________________________________ VIII
第一章緒論_______________________________________________1
1.1前言_______________________________________________ 1
1.2研究目的___________________________________________ 1
1.3研究方法___________________________________________ 3
1.4文獻回顧___________________________________________ 4
1.5論文架構___________________________________________7
第二章類神經網路與模糊控制理論__________________________8
2.1類神經網路的架構___________________________________8
2.1.1 神經元模型____________________________________9
2.1.2 激發函數的種類_______________________________11
2.1.3 類神經網路架構_______________________________14
2.1.4 倒傳遞網路學習機制___________________________16
2.2模糊控制理論_______________________________________18
2.2.1 模糊理論在控制的發展_________________________19
2.2.2模糊控制的基本架構___________________________ 20
第三章泵浦量測系統的性能________________________________29
3.1泵浦的控制理論_____________________________________29
3.2系統組成和量測元件_________________________________33
第四章 實驗內容介紹______________________________________36
4.1類神經網路鑑別_____________________________________38
4.2模糊控制___________________________________________42
4.3實際電腦操作情形介紹_______________________________49
第五章 結論和未來展望____________________________________60
5.1結論_______________________________________________60
5.2未來展望___________________________________________61
參考文獻_________________________________________________62
[1]D.E Rumelhart, G.E Hinton and R.J. Williams, “Learning Internal Representation by Error Propagation,” Parallel Distributed Processing, Vol. 1, pp. 318-362, 1986
[2]K.S. Narendra, and K. Parthasarathy, “Identification and Control of Dynamical Systems Using Neural Networks,” IEEE Transaction on Neural Networks, Vol.1, No. 1, March 1990
[3]R.Grino, G. embrano and C. Torras, “Nonlinear System Identification Using Additive Dynamic Neural Networks-two On-line Approaches,” IEEE Transactions on Circuits and Systems, Part I: Fundamental Theory and Applications, Vol. 47, No.2, pp. 150-165,February 2000.
[4]J.C. Patra, R.N. Pal, B.N. Chatterji, and G. Panda, “Identification of Nonlinear Dynamic Systems Using Functional Link Artificial Neural Networks,” IEEE Transactions on Systems, Man and Cybernetics, Part B, Vol. 29, No. 2, April 1999
[5]Xin Ping Xu, “Experimental Modeling of a Hydraulic Load Sensing Pump Using Neutral Networks,” Spring 1997
[6]陳培勳,”模糊控制軟體系統發展與應用,” 中央大學機械工程研究所碩士論文, 1999
[7]鄭遠鐘,”適應性類神經模糊控制器於泵浦系統之應用,”中央大學機械工程研究所碩士論文, 2000
[8]R. P. Copeland and K. S. Rattan, ”A Fuzzy Logic Supervisor for PID Control of Unknown Systems,” IEEE International Symposium on Intelligent Control, pp. 22-26, August 1994
[9]杜孟奇,”應用RBF類神經網路於超音波馬達之位置控制,” 中央大學機械工程研究所碩士論文, 2001
[10]喬正邦,”強健適應性類神經網路控制研究,” 中央大學機械工程研究所碩士論文, 2002
[11]Oliver Nelles, Nonlinear system identification: from classical approaches to neural networks and fuzzy models, Springer Verlags, December 2000
[12]邱勤山, 胡世平, 姜太倫, 楊建裕主編, 流體機械, 高立圖書, 1990
[13]葉怡成, 類神經網路模式應用與實作, 儒林, 1995
[14]王文俊, 認識Fuzzy, 全華科技, 1997
[15]張智星, Matlab程式設計與應用, 清蔚科技, 2000
[16]羅華強, 類神經網路─Matlab的應用, 清蔚科技, 2001
[17]王國榮, 新觀念的Visual Basic 6.0教本, 旗標, 2000
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊