跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/15 18:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:連文琪
研究生(外文):Wen-Chi Lien
論文名稱:有機物於不同環境條件下揮發特性之探討
論文名稱(外文):Volatilization Characteristics of Organic Compounds under Various Environmental Conditions
指導教授:李俊福李俊福引用關係
指導教授(外文):Jiunn-Fwu Lee
學位類別:碩士
校院名稱:國立中央大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:91
中文關鍵詞:揮發特性質傳速率修正Knudsen擴散方程式反應速率活化能觀念質量傳送模式亨利常數
外文關鍵詞:Reaction Rate Concept constantMass Transfer TheoryModified Knudsen Diffusion Equationmass transfer rateHenry’s lawKeywords : volatility characteristics
相關次數:
  • 被引用被引用:6
  • 點閱點閱:177
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
過去學者探討有機物自水中揮發行為時,大都著重於高揮發性有機物,對於較低揮發性有機物較少探討,但有機物本身之物化性質及環境條件也會支配其揮發速率。本研究選用十三種不同物化性質之有機物,以其亨利常數與水溶解度區分為四類,於各種環境條件(液相擾流、氣相擾動及溶液中添加界面活性劑或多苯環有機物)進行批次實驗,目的在探討有機物於不同環境條件下之揮發特性,並利用三種揮發模式(質量傳送模式、修正Knudsen擴散方程式、反應速率活化能觀念)描述其揮發行為,進而比較其適用性及應用性。
實驗結果顯示(1)液相擾流、氣相擾動系統中,亨利常數為決定有機化合物質傳速率之重要因子;對於有添加物於溶液中,則有機物的水溶解度為決定質傳速率之重要因子。在不同液相擾流強度下,高亨利常數有機物之質傳係數變化趨勢,大致呈向上彎曲狀,而低亨利常數有機物則呈現飽和彎曲狀,此差異可由有機物在交界面之濃度差來解釋;(2)有機物於界面活性劑或多苯環染料溶液中之質傳速率,可視為添加物濃度與有機物本身溶解度之函數關係,特別在多苯環染料溶液中,因苯環型有機物與其分子間作用力較明顯,所以質傳速率下降程度比直鏈型明顯。(3)相似物化特性之有機化合物,於各種環境變數下其質傳係數變化皆相似。(4)在三種揮發模式中:質傳理論適用於解釋高亨利常數有機物之揮發行為,但無法完全解釋溶液性質對其揮發行為之影響;修正Knudsen方程式較適用於低亨利常數之有機物;反應速率活化能觀念,雖可解釋環境變數之影響,但僅提供一觀念模式,無法量化所得之結果。
Abstract
In the past, investigators who devoted to study the evaporate behavior of organic compounds from water solution merely put emphasize on the organic compounds with relatively high volatility, for the organic compounds with relatively low volatility which seldom be illustrated. Additionally, the volatility rate of organic compounds can be dominated by their physical and chemical characteristics.
In this study thirteen organic compounds that can be classified for four types were selected and experiments were carried out, under different environmental conditions. (i.e., liquid stirring, gas mixing and surfactant or poly-benzene organic compounds addition to the solution.), The organic compounds be treated in batch experiment, for the purpose of evaporate behavior can be illustrated under different environmental coefficient conditions. Moreover, not only evaporate behavior can be described by three evaporate models (i.e., Mass Transfer Theory, Modified Knudsen Diffusion Equation, Reaction Rate Concept) but also the applicability and application of models can also be studied.
Under liquid/gas stirring system, the Henry’s constant was a significant factor for the mass transfer rate of organic compounds. Additionally, under the solution mixing with soluble organic compounds, the solubility of the organic compounds was a dominant factor. The mass transfer coefficients of organic compound with relatively high Henry’s constant tended to upward increase with an increasing in the intensity of liquid stirring, The transfer coefficient of the organic compounds with the relatively low Henry’s constant tended to downward increase. The difference results can be explained for the concentration gradient within gas/liquid interface. The mass transfer rate of the organic compounds in surfactant or poly-benzene dyes solution can be regarded as the function of soluble organic compounds concentration and solubility. Particularly in poly-benzene dyes solution, for the interactions of non-benzene compounds were not significant from benzene compounds, a decrease of the mass transfer rate in the latter was more prominent than that in the former. The experiment results presented that the mass transfer coefficients for different organic compounds that had similar physical and chemical properties were very closely. Of three evaporate models, Mass Transfer Theory is largely responsible for the organic compound with relatively high Henry’s constant, but hard to explain the influence of the evaporate behavior from aqueous characteristics completely. Modified Knudsen Diffusion Equation is largely responsible for the organic compound with relatively low Henry’s constant. Reaction Rate Concept merely was applied to account for the influence resulted from the different environmental conditions.
目 錄
目次 頁次
目錄………………………………………………………………….…Ⅰ
圖目錄……………………………………………………………….…Ⅴ
表目錄……………………………………………………………….…Ⅵ

第一章前言……………………………………….……….………..1
1-1研究緣起………………………………………….………...1
1-2研究目的………………………………………….………...2
1-3研究架構………………………………………….………...3

第二章文獻回顧………………………………………….………...4
2-1應用之基本原理…………………………….…….………..4
2-1-1二層膜理論(Two — Film Theory)……………………….4
2-1-2氣體動力學觀念…………………………….…….………..6
2-1-3溶解度增溶效應………………………………….………...8
2-1-4Arrhenius活化能方程式…………………………………...10
2-2有機物之揮發…………………………………….………...11
2-2-1有機物自一般自然水體中揮發………………….………...11
2-2-2有機物自廢水中揮發…………………………….………...12
2-2-3化合物亨利常數與揮發之相關性……………….………...13
2-2-4有機物揮發時擾流強度的表示方式……………….……...14
2-3影響揮發之因子…………………………………….……...16
2-3-1溫度之影響……………………………………….………...16
2-3-2大分子有機物與界面活性劑之影響……………...……….17
2-3-3有機物溶解度之影響…….…………….…………..………18
2-3-4反應槽的尺寸之影響………………………………..……..19
2-3-5氣、液擾流對有機物揮發之影響…………………….……21
2-4三種應用之揮發模式………………………………..……..22
2-4-1質量傳送模式(Mass Transfer Theory)…………….……23
2-4-2修正Knudsen方程式(Modified Knudsen Diffusion Equation)…………………………………………….…….25
2-4-3反應速率活化能觀念(Reaction Rate Concept)…………..26

第三章實驗材料、設備與方法……………………………….……28
3-1實驗材料……………………………………………….…...28
3-1-1有機化合物之分類…………………………………….…...28
3-1-2陰離子型界面活性劑………………………………….…...32
3-1-3多苯環有機化合物…………………………………….…...33
3-1-4其他試劑……………………………………………….…...34
3-2實驗設備……………………………………………….…...34
3-3實驗方法……………………………………………….…...37
3-3-1量測界面活性劑對揮發速率之影響………………….…...37
3-3-2量測多苯環有機化合物對揮發速率之影響………….…...38
3-3-3液相擾流強度之控制………………………………….…...40
3-3-4氣相擾動之控制…………………………………….….…..40
3-3-5溫度控制…………………………………………………....40
3-3-6反應槽尺寸………………………………………………....40
3-3-7反應時間…………………………………………………....41
3-3-8取樣時間………………………….………………………...41
3-3-9萃取溶劑………………………….………………………...41

第四章結果與討論…………………….…………………………...42
4-1有機化合物在溶液中之反應速率….……………………...42
4-1-1有機化合物之揮發競爭………….……………….………..42
4-1-2靜置系統下之揮發反應………….……………….………..45
4-1-3液相擾流系統下之揮發反應…….…………………….…..46
4-1-4氣相擾動系統下之揮發反應…….…………………….…..47
4-2環境因子對於有機化合物揮發速率之影響…….………...48
4-2-1有機化合物在液相擾流系統中質傳係數之變化….……...48
4-2-2有機化合物在氣相擾動系統中質傳係數之變化….……...51
4-2-3溶液中添加物對有機化合物傳送速率變化之影響….…...53
4-3不同環境條件下有機物之變化趨勢……….……………...56
4-3-1有機物於液相擾流下質傳係數比值之變化趨勢…………57
4-3-2有機物於氣相擾動下質傳係數比值之變化趨勢…………60
4-3-3有機物於溶液中有添加物時質傳係數比值之變化趨勢…63
4-4不同物化性質有機物之揮發特性………………..………..68
4-4-1高亨利常數高水溶解度化合物之揮發特性……………....69
4-4-2低亨利常數高水溶解度化合物之揮發特性……………....71
4-4-3高亨利常數低水溶解度化合物之揮發特性……………....73
4-4-4低亨利常數低水溶解度化合物之揮發特性……………....75
4-5三種揮發模式之應用性與優缺點…………….……….…..77
4-5-1質量傳送模式(Mass Transfer Theory)….…………..…...77
4-5-2修正Knudsen方程式(Modified Knudsen Diffusion Equation)……………...……………...……………….…....81
4-5-3反應速率活化能觀念(Reaction Rate Concept)……..…..81

第五章結論……………...……………...……………………….….83
5-1結論……………...……………...……………………….….83
5-2建議……………...……………...……………………….….85

參考文獻……………...……………...……………………….………..86










圖 目 錄
目次 頁次
圖1.1實驗架構流程圖………………………………………….…..3
圖2.1二層膜理論所假設之揮發過程………………………….…..5
圖3.1實驗模廠設計圖………………………………………….…..35
圖3.2有機物於界面活性劑溶液中之配製方法及實驗步驟.……...39
圖4.1苯在不同初始濃度與不同混合物時質傳係數之變化….…..44
圖4.2不同物化性質有機物於靜止系統下濃度變化與時間之關係45
圖4.3不同物化性質之有機物於液相擾流系統下濃度變化與時間之關係………...……………………….………………….…...46
圖4.4低亨利常數化合物於氣相擾動系統下濃度變化與時間之關係...…………………………………….……………………....47
圖4.5有機物於液相擾流系統下kOL/kOLo之變化趨勢………….….58
圖4.6有機物於氣相擾動系統下kOL/kOLo之變化趨勢……………..62
圖4.7有機物於添加陰離子界面活性劑溶液中kOL/kOL之變化趨勢...…………………………………….……………………....66
圖4.8有機物於添加多苯環化合物溶液中kOL/kOL之變化趨勢…...67
圖4.9高亨利常數高水溶解度有機物與參考化合物比較之趨勢圖…70
圖4.10低亨利常數高水溶解度有機物與參考化合物比較之趨勢圖…72
圖4.11高亨利常數低水溶解度有機物與參考化合物比較之趨勢圖…74
圖4.12低亨利常數低水溶解度有機物與參考化合物比較之趨勢圖…76
圖4.13高水溶解度化合物與參考化合物苯比較之趨勢圖………...79
圖4.14低水溶解度圖化合物與參考化合物苯比較之趨勢圖……...80
表 目 錄
目次 頁次
表3-1有機化合物之物理化學特性…………………………….…..30
表4-1有機化合物於液相擾流系統中之質傳係數……….………..49
表4-2有機化合物於氣相擾動系統中之質傳係數……….………..51
表4-3有機化合物於添加陰離子界面活性劑溶液中之質傳係數...54
表4-4有機化合物於添加多苯環有機化合物溶液中之質傳係數...55
參考文獻
(1)Liss P.S. and Slater P.G. ”Flux of Gases across the Air-Sea Interface”, Nature, 247, 181-184, (1974)
(2)賈秉文譯,物理化學,四版,民國69年,台北,台灣東華。(1970)
(3)Chiou, C.T.”Evaporation of Components from a Miscible Solution “, Environment of International, 4, 15-19,(1980)
(4)Chiou C.T., Malcoim R. L., Brinton T.I. and Kile D.E.” Water Solubility Enchancement of Some Organic Pollutnats and Pesticides by Dissolved Humic and Fulvic Acids”, Environ. Sci. Technol., 20(5), 502-508, (1986)
(5)Kile D. E. and Chiou C. T. “Water Solubility Enhancements of DDT and Trichlorobenzene by Some Surfactants Below and Above the Critical Micelle Concentration”, Environ. Sci. Technol.,23(7), 832~838,(1989)
(6)Jafvert C. T. “Sediment-and Saturated-Soil-Associated Reactions Involving an Anionic Surfactant (Dodecylsulfate).2. Partition of PAH Compounds among Phases”, Environ. Sci. Technol.,25(6), 1039~1045,(1991)
(7)Edwards D.A., Luthy R.G. and Liu Z. “Solubilization of Polycyclic Aromatic Hydrocarbons in Micellar Nonionic Surfactant Solutions”, Environ. Sci. Technol., 25 (1), 127~133,(1991)
(8)Makcay D. and Leinonen P. J. ”Rate of Evaporation of Low-Solubility Contaminants from Water Bodies to Atmosphere”, Environ. Sci. Technol., 9(13), 1178-1180,(1975)
(9)Smith J. H., Bomberger D. C., Haynes D.L. ”Predication of the Volatilization Rate of Chemicals in Water ” AIChE, 75, p1367- 1373,(1979)
(10)Smith J.H., Bomberger D.C., Haynes D.L.”Predication of the Volatilization Rate of High-Volatility Chemicals from Natural Water Bodies”, Environ. Sci. Technol., 14(11), 1332-1336,(1980)
(11)Reid R. C., Prausnitz J. M. and Sherwood T. K. “The Properties of Gases and Liquids”, McGraw-Hill, New York, (1977)
(12)Rathbun R. E. and Tai D. Y. “Comparison of Nonlinear Least Squares and Log Transformation Procedures for Calculating Volatilization Coefficients”, Chemosphere, 13 (7), 715-730, (1984)
(13)Rathbun R. E. and Tai D. Y. “Gas-film Coefficient for Volatilization of Ethylene Dibromide from Water”, Environ. Sci. Technol., 20(9), 949-952,(1986)
(14)Rathbun R. E. and Tai D. Y. “Volatilization of Ethylene Dibromide from Water”, Environ. Sci. Technol., 21(3), 248-252, (1987)
(15)Rathbun R. E. “Prediction of Stream Volatilization Coefficients”, J. Env. Eng. ASCE, 116(3), p615-631,(1990)
(16)Ince N. and Inel Y. “A SemI-Empircal Approach To Relate the Volatilization Rates of Organic Chemicals to Their Physical Properties”, Water Res., 25(8), 903- 909 ,(1991)
(17)Dawson D. S. and Gokare M. A. “Gaseous emissions from wastewater facilities”, Water Environ. Res., 66(4), 375- 378,(1994)
(18)Mayer C. G. J., Pau I. S. P. and Mohamed F. “Emissions of Air Toxics from Wastewater Treatment plants”, Water Environ. Res., 66(2), 140-144,(1994)
(19)Cunningham D. “Estimation of VOC Emissions”, J. Cleaner.Pord, 3(4), 225 - 228,(1995)
(20)Melcer H. ”Monitoring and Modeling VOCs in Wastewater Facilities”, Environ. Sci. Technol., 28(7), 328-335,(1994)
(21)Munz C. and Roberts P. “Gas- and Liquid-Phase Mass Transfer Resistances Of Organic Compounds During Mechanical Ssrface Aeration”, Water Res, 23(5), 589- 601,(1989)
(22)Hsieh C.C., Babcock Jr. R.W. and Stenstorm M. K. “Estimating Semivolatile Organic Compound Emission rate and Oxygen Transfer Coefficients in Diffused Aeration”, Water Environ. Res., 66 (3), 206- 210, (1994)
(23)Zytner R.G., Madani-Isfahani M. R., Corsi L. “Oxygen Uptake and VOC Emissions at Enclosed sewer Drop Structure”, Water Environ. Res., 69 (3), 286-294,(1997)
(24)Mackay D. and Shiu W. Y. A. J. Phys. Chem. Ref. Data ,10, 1175-1979,(1981)
(25)Matter-Müller C., Gujer W. and Giger W. ”Transfer of Volatile Substances from Water to the Amosphere”, Water Res., 15, 1271-1279,(1981)
(26)Roberts P. V. and Dändliker P. “Mass Transfer of Volatile Organic Contaminants fromAqueous solution to Atmosphere during Surface Aeration”, Environ. Sci. Technol., 17 (8), 484-489,(1983)
(27)Roberts P. V., Munz C. and Dändliker P. “ Modeling Volatile Organic Solute Removal by Surface and Bubble Aeration”, J. Water Pollut. Control Fed., 56 (2),157-163,(1984)
(28)Dewulf J., Langenhove Y. and Heireman B. “The Air/Water Exchange of Volatile Organic Compounds from Water in the Transient and Turbulent Regime”, Water Res, 32(7), 2106- 2122,(1998)
(29)Peng J. , Bewtra J. K. and Biswas N. ”Effect of Tutbulence on Volatilization of Selected Organic Compounds from Water”, Water Environ. Res., 67 (1),101-107,(1995)
(30)Chao H. P., Lee J. F. and Lee C. K. ,”Effects of dissolved chemicals on the volatilization rates of BTEX”, J. Environ. Sci. Health Part A, A35 (6), 869-881,(2000)
(31)Hass B. S. and Herrmann R. ”Tracing Volatile Organic Compounds in Sewers”, Water Sci. Tech, 37(1), 295- 301,(1998)
(32)Chao H. P., Lee J. F., “Volatilization Reduction Effects of BTEX by Surfactant and High-Molecular-Weight Organic Compounds in Aqueous Solutions ,“IWA Asia-Pacific Regional Conference, Fukuoka, Japan,(2001)
(33)Dong S. and Dasguta P. K., ”Solubility of Gaseous from Aldehyde in Liquid Water and Generation of Trace Standard Gaseous form Aldehyde”, Environ. Sci. Technol., 20 (5), 637-640,(1986)
(34)Peng J., Bewtra J.K.and Biswas N. “Volatilization of Selected Organic Compounds from Quiescent Water”, J. Env. Eng. ASCE, 120(3), 662- 669,(1994)
(35)Southworth G.R. “The Role of Volatilization in Removing Polycyclic Aromatic Hydrocarbon from Aquatic Environments”, Bull. Environ. Contam. Toxicol., 21, 507-514,(1979)
(36)Rathbun R. E. “Volatilization of Organic Compounds from Steam”, J. Env. Eng. ASCE, 108(5), 615-631,(1982)
(37)Gholson A.R., Aibittion J.R.and Jayanty R.K.M.”Evaluation of an Enclosure Method for Measuring Emission of Volatile Organic Compound from Quiescent Liquid Surfaces”, Environ.Sci.Technol, 25 (3), 519-524,(1991)
(38)Cohen N., Cocchio W. and Mackay D., “Laboratory Study of Liquid-Phase Controlled Volatilization Rates in Presence of Wind Waves”, Environ. Sci. Technol.,12 (5), 553-558,(1978)
(39)Mackay D. and Yeun A. T. K. ,”Mass Transfer Coefficient for Volatilization of Organic Solutes from Water”, Environ. Sci. Technol., 17(4), 211-216,(1983)
(40)Schwarzenbach R. P. ,Gschwend P. M. ,Imboden D. M.,” Environmental Organic Chemistry”, John Wiley & Sons. Inc., New York,(1993)
(41)Rathbun R. E. and Tai D. Y.,“Gas-film Coefficients for Streams”, J. Env. Eng. ASCE., 109(5), 1111-1127,(1983)
(42)Chiou C. T.,Freed.V. H., Peters L. J.and Kohnert, R. L.” Evaporation of Solutes from Water”, Environment International, 3, 231-235,(1980)
(43)Vane L.M.and Giroux E.L.,“Henry’s Law Constants and Micellar Partitioning of Volatile Organic Compound in Surfactant Solutions”, J.chem.Eng.Data, Vol.45, p38- 47,(2000)
(44)Rathbun R. E. and Tai D. Y. “ Volatilization of Ketones” Chemosphere, 13(9), 1009-1023,(1984)
(45)Shunitz T.,Kiyoshi Oba , Masami Fukushima , Ken N. Kiyoshi H.,”Water solubility enhancement of pyrene in the presence of humic substances”, Analytica Chimica Acta, 237,351-357,(1997)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top