跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/04 04:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭倍誠
研究生(外文):Pei_Cheng Kuo
論文名稱:酮胺金屬錯合物(金屬:鋁、鋅)和三芽基咯金屬錯合物(金屬:鎵、銦、釔)之化學
論文名稱(外文):The Chemistry of Metal-Ketiminate Complexes (M= Al, Zn) and Tridentate Substituted Pyrrolyl Metal Complexes (M= Ga, In, Y). Synthesis, Reactions, and Ring-Opening Polymerization.
指導教授:黃瑞賢黃瑞賢引用關係
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
中文關鍵詞:酮胺咯
相關次數:
  • 被引用被引用:0
  • 點閱點閱:216
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要:
三芽基咯衍生物配位基部分:
含三芽基咯衍生物配位基之五配位鎵、銦金屬錯合物和七配位釔金屬錯合物已經被合成並鑑定,取MCl3和一倍當量三芽基咯衍生物配位基之鋰鹽於乙醚中反應可以得到產率不錯的 [NC4H2(CH2NMe2)2-2,5]MCl2 (3, M = Ga; 4, M = In) 和{[C4H2N(CH2NMe2)2-2,5]YCl2.LiCl(Et2O)2}2, 5。取化合物3和兩當量的甲基鋰於乙醚中—78°C下反應,接著加熱迴流三十分鐘,可合成烷基化反應之產物[NC4H2(CH2NMe2)2-2,5]GaMe2, 6b。相同的,取兩倍之甲基鋰或正丁基鋰和化合物4反應分別可得到雙烷基取代之錯合物7b和8b,然而試著以烷基鋰和化合物5進行烷基化反應卻無法順利,而是產生原配位基之鋰鹽。化合物4為一極強的路易士酸,當其接觸到水氣時會迅速產生{[C4H2N(CH2NMe2)2-2,5]InCl2}2(μ-OH2), 9。 化合物3和4與一些鋰鹽試劑反應可合成一系列和特殊取代機之鎵銦金屬錯合物,取兩倍或一倍之LiCCPh 於乙醚中和化合物3、4進行反應分別可合成雙苯乙炔基取代之錯合物 [NC4H2(CH2NMe2)2-2,5]M(CCPh)2 (10, M = Ga; 11, M = In) 與單苯乙炔取代之錯合物[NC4H2(CH2NMe2)2-2,5]MClCCPh (12, M = Ga; 13, M = In);單苯乙炔取代錯合物 12和13亦可以直接將化合物 3、4分別和化合物 10, 11反應而得,相同的,取化合物3、4和兩倍苯胺的鋰鹽於乙醚中反應可以得到兩個胺取代基之化合物[NC4H2(CH2NMe2)2-2,5]M(NHAr)2 (14, M = Ga; 15, M = In). 將反應改由以醇類之鋰鹽進行則會得到雙烷氧基取代之化合物 [NC4H2(CH2NMe2)2-2,5]Ga(OAr)2, 16和單烷氧基取代之化合物 [NC4H2(CH2NMe2)2-2,5]GaClOAr, 17.
所有合成之新化合物藉由氫和碳之核磁共振光譜加以鑑定,化合物5, 6b, 7b, 9, 10, 11 和15可再結晶得到適當的晶體而藉由X-ray晶體結構加以鑑定,鎵金屬化合物12於溶液中形成一平衡反應,藉由變溫之氫核磁共振光譜實驗可以得到Van’t Hoff plot並可計算其ΔH°和ΔS°。
雙芽基酮胺配位基:
一系列含有酮胺配位基之鋁金屬化合物已經被合成並對其結構與光譜加以鑑定,取兩倍酮胺配位基於乙醚中與LiAlH4反應可以得到含兩倍酮胺配位基之Al-H化合物 (OCMeCHCMeNAr) 2 AlH, 19,而其同位素Al-D化合物Al(OCMeCHCMeNAr)2D 19D可以使用LiAlD4和兩倍酮胺配位基反應而得。化合物19和19D在二氯甲烷溶液中常溫下可和二氧化碳(CO2)反應得到罕見之鋁甲酸鹽化合物20 和 20D,相同地,化合物19和19D和phenyl isocyanate與二硫化碳反應可以得到Al(OCMeCHCMeNAr)2(OCH=NPh) 21, Al(OCMeCHCMeNAr)2(OCD=NPh) 21D和Al(OCMeCHCMeNAr)2(SCHS) 22, Al(OCMeCHCMeNAr)2(SCDS) 22D,此外,化合物19和胺甲酸乙酯(NH2COOEt) 於甲苯溶液中100℃下可以得到罕見之Al-NCO化合物 23, Al(OCMeCHCMeNAr)2(NCO)。
化合物 19, 20, 21, 22和23之晶體結構已經藉由X-ray單晶繞涉儀而獲得,所有之鋁化合物皆為五配位扭曲雙三角錐結構。對於二氧化碳嵌入化合物19之Al-H鍵我們進行密度泛含理論的計算(DFT calculation),計算其結構穩定性與反應之活化能。
四芽基酮胺配位基:
一種新型的雙酮胺連接配位基已經被加以合成,並且以此配位基所合成之雙鋁金屬化合物也已經被報導,取兩倍三烷基鋁和雙酮胺連接配位基進行反應可以得到含烷基取代之雙核化合物CH2{C6H2[CH(CH3)2]2NMeCHCMeCOAlMe2}2 25和CH2{C6H2[CH(CH3)2]2NMeCHCMeCOAlEt2}2 26,化合物25可已和兩倍的CF3SO3SiMe3於甲苯中反應得CH2{C6H2[CH(CH3)2]2- NMeCHCMeCOAlMeCF3SO3}2 27。另外,取一倍量與兩倍量的碘和化合物25反應分別可得到化合物CH2{C6H2[CH(CH3)2]2NMeCHCMeCO- AlMeI}2 28和CH2{C6H2[CH(CH3)2]2NMeCHCMeCOAlI2}2 29,令人意外的,取化合物28和29與兩倍的AgBF4於甲苯中可反應生成CH2{C6H2[CH(CH3)2]2NMeCHCMeCOAlF2}2 30。和鋁金屬化合物一樣,雙核鋅金屬化合物已經被加以合成,合成方式為取兩倍ZnEt2和雙酮胺連接配位基進行反應。
化合物25和26的結構已經藉由X-ray單晶繞涉儀而獲得, 化合物25和26都是屬於以配位基上氧和氮原子以及兩個烷基取代之鋁金屬四面體的結構。
Abstract
Tridentate Substituted Pyrrolyl Ligands:Five-coordinated gallium, indium and seven-coordinated yttrium complexes stabilized by tridentate substituted pyrrole ligand have been synthesized and characterized. The reactions of MCl3 with one equiv of Li[NC4H2(CH2NMe2)2-2,5] in diethyl ether afford [NC4H2(CH2NMe2)2-2,5]MCl2 (3, M = Ga; 4, M = In) and {[C4H2N(CH2NMe2)2-2,5]YCl2.LiCl(Et2O)2}2, 5 in high yield. Alkylation of 3 with two equiv. MeLi in diethyl ether at —78 °C generates a brown solid, [NC4H2(CH2NMe2)2-2,5]GaMe2, 6b. Similarly, the reactions of 4 with two equiv. MeLi or n-BuLi afford dialkylated complexes 7b and 8b, respectively. However, the reaction of 5 with two equiv. RLi in diethyl ether at —78 °C yields a lithium salt, Li[NC4H2(CH2NMe2)2-2,5]. Complex 4 is a strong Lewis acid, which absorbs H2O readily to form {[C4H2N(CH2NMe2)2-2,5]InCl2}2(μ-OH2), 9. Complexes 3 and 4 react with various lithium reagents to generate a series of gallium and indium complexes. Reactions of 3 and 4 with two or one equiv. LiCCPh in diethyl ether afford dialkynyl complexes [NC4H2(CH2NMe2)2-2,5]M(CCPh)2 (10, M = Ga; 11, M = In) and monoalkynyl complexes [NC4H2(CH2NMe2)2-2,5]MClCCPh (12, M = Ga; 13, M = In), respectively. Alternatively, the monoalkynyl complexes 12 and 13 can be synthesized via ligand redistribution by reacting complexes 3 and 4 with complexes 10 and 11. Similarly, the reactions of 3 and 4 with two equiv. LiNHAr (Ar = 2,6-iPr2C6H3 ) in diethyl ether afford diamide complexes [NC4H2(CH2NMe2)2-2,5]M(NHAr)2 (14, M = Ga; 15, M = In). Reaction of complex 3 with two and one equiv. LiOAr (Ar = 2,6-iPr2C6H3 ) in diethyl ether afford dialkoxide complexes [NC4H2(CH2NMe2)2-2,5]Ga(OAr)2, 16 and monoalkoxide complexes [NC4H2(CH2NMe2)2-2,5]GaClOAr, 17.
All the new complexes have been characterized by 1H and 13C NMR spectroscopy. Complexes 5, 6b, 7b, 9, 10, 11 and 15 have been also characterized by X-ray crystallography. ΔH° and ΔS° of complex 12 can be obtained by the plotting Van’t Hoff plot using variable temperature 1H NMR spectroscopic data.
Bidentate Ketiminate Ligands:A series of aluminum complexes featuring the ketiminate ligand, OCMeCHCMeNHAr (Ar= 2,6-iPr2C6H3), have been prepared and characterized spectroscopically and structurally. Reactions of LiAlH4 with 2 equiv. of the ketiminate in diethyl ether afforded bisketiminate metal hydride complex, (OCMeCHCMeNAr) 2AlH, 19. Moreover, a deuterated complex Al(OCMeCHCMeNAr)2D 19D can also be synthesized by reacting LiAlD4 with ketiminate. Complex 19 and 19D readily react with carbon dioxide at room temperature in dichloromethane to yield a novel aluminum formate complex 20 and 20D. Similarly, complex 19 and 19D react with phenyl isocyanate and carbon disulfide to yield Al(OCMeCHCMeNAr)2(OCH=NPh) 21, Al(OCMeCHCMeNAr)2(OCD=NPH) 21D and Al(OCMeCHCMeNAr)2(SCHS) 22, Al(OCMeCHCMeNAr)2(SCDS) 22D. Reaction of complex 19 with NH2COOEt in toluene at 100℃ afford a novel aluminum isocyanato complex 23, Al(OCMeCHCMeNAr)2(NCO).
The structures of complexes 19, 20, 21, 22, and 23 have been determined by X-ray crystallography. All the aluminum complexes consist of a five-coordinated trigonal bipyramidal structure. DFT calculation of the CO2 inserting into the aluminum hydride bond of 19 was also preformed.
Tetradentate Ketiminate Ligands:A new type of linked diketiminate ligands was synthesized and related dialuminum metal complexes were also reported. Reactions of 2 equiv. AlR3 with this linked diketiminate ligand yield aluminum alkyl complexes CH2{C6H2[CH(CH3)2]2NMeCHCMeCOAlMe2}2 25 and CH2{C6H2[CH(CH3)2]2NMeCHCMeCOAlEt2}2 26. Complex 25 reacts with 2 equiv. CF3SO3SiMe3 in toluene to generate CH2{C6H2[CH(CH3)2]2NMeCHCMeCOAlMeCF3SO3}2 27. Reactions of 25 with one and two equiv. I2 in toluene at 100℃ to afford complexes CH2{C6H2[CH(CH3)2]2NMeCHCMeCOAlMeI}2 28 and CH2{C6H2[CH(CH3)2]2NMeCHCMeCOAlI2}2 29. Surprisingly, reacting 28 and 29 with 2 equiv of AgBF4 in toluene generates CH2{C6H2[CH(CH3)2]2NMeCHCMeCOAlF2}2 30. Similarly, dizinc complex was synthesized, which reacts 2 equiv. ZnEt2 with diketiminate ligands.
The structures of complexes 25 and 26 have been determined by X-ray crystallography. Complexes 25 and 26 both exhibit tetrahedron structures with the aluminum atom surrounded by oxygen and nitrogen atoms of chelating ketiminate and two alkyl groups.
目錄
章節 頁次
Abstract Ⅰ
中文摘要 Ⅴ
第一章 緒論 1
第二章 實驗部分
2-1 一般實驗 8
2-2 物理性質的測量 8
2-3-1合成2,5-Bis(dimethylaminomethyl)pyrrole (BDMAMP) (1) 9
2-3-2合成Lithium2,5-Bis(dimethylaminomethyl)- pyrrolate (2) 10
2-3-3合成[2,5-(CH2NMe2)2C4H2N]GaCl2 (3) 10
2-3-4合成[2,5-(CH2NMe2)2C4H2N]InCl2 (4) 10
2-3-5合成{[2,5-(CH2NMe2)2C4H2N]YCl2. LiCl(Et2O)2}2 (5) 11
2-3-6合成[2,5-(CH2NMe2)2C4H2N]GaMe2 (6a, 6b) 11
2-3-7合成[2,5-(CH2NMe2)2C4H2N]InMe2 (7a, 7b) 12
2-3-8合成[2,5-(CH2NMe2)2C4H2N]InBu2 (8a, 8b) 13
2-3-9合成{[2,5-(CH2NMe2)2C4H2N]InCl2}2(μ-OH2) (9) 13
2-3-10合成Ga(CCPh)2[2,5-(CH2NMe2)2C4H2N] (10) 14
2-3-11合成In(CCPh)2[2,5-(CH2NMe2)2C4H2N] (11) 14
2-3-12合成Ga(CCPh)Cl[2,5-(CH2NMe2)2C4H2N] (12) 15
2-3-13合成In(CCPh)Cl[2,5-(CH2NMe2)2C4H2N] (13) 15
2-3-14合成Ga(NHAr)2 [2,5-(CH2NMe2)2C4H2N] (14) 16
2-3-15合成In(NHAr)2 [2,5-(CH2NMe2)2C4H2N] (15) 16
2-3-16合成Ga(OAr)2 [2,5-(CH2NMe2)2C4H2N] (16) 17
2-3-17合成Ga(OAr)Cl[2,5-(CH2NMe2)2C4H2N] (17) 18
2-4-1合成OCMeCHCMeNHAr (Ar = 2,6-iPr2C6H3) (18) 18
2-4-2合成(OCMeCHCMeNAr)2AlH (19) & (OCMeCHCMeNAr)2AlD (19D) 18
2-4-3合成(OCMeCHCMeNAr)2AlOCOH (20) & (OCMeCHCMeNAr)2AlOCOD (20D) 19
2-4-4合成(OCMeCHCMeNAr)2AlOCHNPh (21)& (OCMeCHCMeNAr)2AlOCDNPh (21D) 20
2-4-5合成(OCMeCHCMeNAr)2AlSCSH (22) 20
2-4-6合成(OCMeCHCMeNAr)2AlNCO (23) 21
2-5-1合成CH2{C6H2[CH(CH3)2]2NHMeCHCMeCO}2 (24) 21
2-5-2合成CH2{C6H2[CH(CH3)2]2NMeCHCMeCO- AlMe2}2 (25) 22
2-5-3合成CH2{C6H2[CH(CH3)2]2NMeCHCMeCO- AlEt2}2 (26) 22
2-5-4 合成 CH2{C6H2[CH(CH3)2]2NMeCHCMeCO- AlMeCF3SO3}2 (27) 23
2-5-5 合成CH2{C6H2[CH(CH3)2]2NMeCHCMeCO- AlMeI}2 (28) 23
2-5-6合成CH2{C6H2[CH(CH3)2]2NMeCHCMeCO- AlI2}2 (29) 23
2-5-7合成CH2{C6H2[CH(CH3)2]2NMeCHCMeCO- AlF2}2 (30) 24
2-5-8合成CH2{C6H2[CH(CH3)2]2NMeCHCMeCO- ZnEt}2 (31) 24
第三章 結果與討論
3-1利用2,5-bis(dimethylaminomethyl)pyrrole為配位基之錯合物的合成與鑑定 26
3-1-1 三芽基咯衍生物配位基(1) 26
3-1-2 [NC4H2(CH2NMe2)2-2,5]GaCl2 (3) 29
3-1-3 [NC4H2(CH2NMe2)2-2,5]InCl2 (4) 29
3-1-4 {[C4H2N(CH2NMe2)2-2,5]YCl2.LiCl(Et2O)2} (5) 29
3-1-5 [NC4H2(CH2NMe2)2-2,5]GaMe2 (6a, 6b) 31
3-1-6 [NC4H2(CH2NMe2)2-2,5]InMe2 (7a, 7b) 34
3-1-7 [NC4H2(CH2NMe2)2-2,5]InBu2 (8a, 8b 36
3-1-8 {[C4H2N(CH2NMe2)2-2,5]InCl2}2(μ-OH2) (9) 37
3-1-9 Ga(CCPh)2[C4H2N(CH2NMe2)2-2,5] (10) 40
3-1-10 In(CCPh)2[C4H2N(CH2NMe2)2-2,5] (11) 42
3-1-11 Ga(CCPh)Cl[C4H2N(CH2NMe2)2-2,5] (12) 44
3-1-12 In(CCPh)Cl[C4H2N(CH2NMe2)2-2,5] (13) 44
3-1-13 Ga(NHAr)2[C4H2N(CH2NMe2)2-2,5] (Ar = 2,6-iPr2C6H3) (14) 45
3-1-14 In(NHAr)2 [C4H2N(CH2NMe2)2-2,5] (Ar = 2,6-iPr2C6H3) (15) 46
3-1-15 Ga (OAr)2 [C4H2N(CH2NMe2)2-2,5] (Ar = 2,6-iPr2C6H3) (16) 47
3-1-16 Ga(OAr)Cl[C4H2N(CH2NMe2)2-2,5] (Ar = 2,6-iPr2C6H3) (17) 48
3-1-17 含三芽基咯衍生物配位基金屬錯合物之綜合討論 48
3-2利用OCMeCHCMeNHAr (Ar = 2,6-iPr2C6H3)為配位基之錯合物的合成與鑑定 53
3-2-1雙芽基酮胺配位基(OCMeCHCMeNHAr) (18) 53
3-2-2 (OCMeCHCMeNAr)2AlH (19) & (OCMeCHCMeNAr)2AlD (19D) 53
3-2-3 (OCMeCHCMeNAr)2AlOCOH (20) & (OCMeCHCMeNAr)2AlOCOD (20D) 55
3-2-4 (OCMeCHCMeNAr)2AlOCHNPh (21) & (OCMeCHCMeNAr)2AlOCDNPh (21D) 58
3-2-5 (OCMeCHCMeNAr)2AlSCSH (22) & (OCMeCHCMeNAr)2AlSCSD (22D) 60
3-2-6 (OCMeCHCMeNAr)2AlNCO (23) 61
3-2-7 含雙芽基酮胺配位基金屬錯合物之綜合討論 64
3-3利用CH2{C6H2[CH(CH3)2]2NHMeCHCMeCO}2為配位基之錯合物的合成與鑑定 67
3-3-1 四芽基酮胺配位基CH2{C6H2[CH(CH3)2]2NHMeCHCMeCO}2 (24) 67
3-3-2 CH2{C6H2[CH(CH3)2]2NMeCHCMeCOAlMe2}2 (25) 67
3-3-3 CH2{C6H2[CH(CH3)2]2NMeCHCMeCO- AlEt2}2 (26) 70
3-3-4 CH2{C6H2[CH(CH3)2]2NMeCHCMeCOAlMe- CF3SO3}2 (27) 71
3-3-5 CH2{C6H2[CH(CH3)2]2NMeCHCMeCO- AlMeI}2 (28) 71
3-3-6 CH2{C6H2[CH(CH3)2]2NMeCHCMeCO- AlI2}2 (29) 72
3-3-7 CH2{C6H2[CH(CH3)2]2NMeCHCMeCO- AlF2}2 (30) 72
3-3-8 CH2{C6H2[CH(CH3)2]2NMeCHCMeCO- ZnEt}2 (31) 73
3-3-9含四芽基酮胺配位基金屬錯合物之綜合討論 73
第四章 金屬化合物對ε-環己內酮(ε-caprolactone)的開環聚合反應 76
參考資料 78
附錄 83
參考資料
(1) Natta, G.; Pino, P.; Mazzanti, G.; Giannini, U. J. Am. Chem.Soc. 1957, 79, 2975.
(2) McKnight, A. L.; Waymouth, R. M. Chem. Rev. 1998, 98, 2587.
(3) (a) Sinn, H.; Kaminsky, W. Adv. Organomet. Chem. 1980, 18, 99. (b) Sinn, H.; Kaminsky, W.; Vollmer, H. J.; Woldt, R. Angew. Chem., Int. Ed. Engl. 1980, 19, 390.
(4) (a) Cheng, M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc., 1998, 120, 11018. (b) Cheng, M.; Attygalle, A. B.; Lobkovsky, E. B.;Coates, G. W. J. Am. Chem. Soc., 1999, 121, 11583. (c) Chamberlain, B. M.;Cheng, M.; Moore, D. R.; Lobkovsky, E. B.;Coates, G. W. J. Am. Chem. Soc., 2001, 123, 3229. (d) Cheng, M.; Moore, D. R.;Reczek, J. J.; Chamberlain, B. M.; Lobkovsky, E. B.;Coates, G. W. J. Am. Chem. Soc., 2001, 123, 8739.
(5) (a) Qian, B.; Ward, D. L.; Smith, M. R., III. Organometallics 1998, 17, 3070. (b) Qian, B.; Scanlon, W. J., IV; Smith, M. R., III. Organometallics 1999, 18, 1693. (c) Kakaliou, L.; Scanlon, W. J., IV; Qian, B.; Baek, S. W.; Smith, M. R., III. Inorg. Chem. 1999, 38, 5964. (d) Qian, B.; Baek, S. W.; Smith, M. R., III. Polyhedron 1999, 18, 2405.
(6) (a) Prust, J.; Stasch, a.; Zheng, W.; Roesky, H. W.; Alexopoulos, E,; Usón, I.; Böhler, O.; Schuchardt, T. Organometallics 2001, 20, 3825. (b) Cui, C.; Roesky, H. W.; Hao, H.; Schmidt, H. —G.; Noltemeyer, M. Angew. Chem. Int. Ed. 2000, 39, 1815. (c) Cui, C.; Roesky, H. W.; Hao, H.; Schmidt, H. —G.; Noltemeyer, M. Angew. Chem. Int. Ed. 2000, 39, 4531. (d) Cui, C.; Roesky, H. W.; Schmidt, H. —G.; Noltemeyer, M.; Hao, H.; Cimpoesu, F. Angew. Chem. Int. Ed. 2000, 39, 4274. (e) Stender, M.; Eichler, B. E.; Hardman, N. J.; Power, P. P.; Prust, J.; Noltemeyer, M.; Roesky, H. W. Inorg. Chem. 2001, 40, 2794.
(7) (a) Radzewich, C. E.; Guzei, I. A.; Jordan, R. F. J. Am. Chem. Soc. 1999, 121, 8673. (b) Radzewich, C. E.; Coles, M. P.; Jordan, R. F. J. Am. Chem. Soc. 1998, 120, 9384.
(8) (a) Hitchcock, P. B.; Lapprt, M. F.; Layh, M. Chem. Commun. 1998, 201. (b) Hitchcock, P. B.; Lappert, M. F.; Liu, D. —S. J. Chem. Soc. Chem. Commun. 1994, 1699. (c) Hitchcock, P. B.; Lappert, M. F.; Liu, D. —S. J. Chem. Soc. Chem. Commun. 1994, 2637.
(9) (a) Budzelaar, P. H. M.; de Gelder, R.; Gal, A. W. Organometallics 1998, 19, 4121. (b) Budzelaar, P. H. M.; van Oort, A. B.; Orpen, A. G. Eur. J. Inog. Chem. 1998, 1485. (c) Budzelaar, P. H. M.; Moonen, N. N. P.; de Gelder, R.; Smits, J. M. M.; Gal, A. W. Eur. J. Inorg. Chem. 2000, 753.
(10) (a) Vollmerhaus, R.; Rahim, M.; Tomaszewski, R.; Xin, S.; Taylor, N. J.; Collins, S. Organometallics 2000, 19, 2161. (b) Rahim, M.; Taylor, N. J.; Xin, S.; Collins, S. Organometallics 1998, 17, 1315.
(11) (a) Gibson, V. C.; Segal, J. A.; White, A. J. P.; Williams, D. J. J. Am. Chem. Soc. 2000, 122, 7120. (b) Gibson, V. C.; Maddox, P. J.; Newton, C.; Redshaw, C.; Solan, G. A.; White, A. J. P.; Williams, D. J. Chem. Commun. 1998, 1651.
(12) (a) Parks, J. E.; Holm, R. H. Inorg. Chem. 1968, 7, 1408. (b) Clegg, W.; Cope, E. K.; Edwards, A. J.; Mair, F. S. Inorg. Chem. 1998, 37, 2317. (c) Hardman, N. J.; Power, P. P. Inorg. Chem. 2001, 40, 2474. (t) Lee, L. W. M.; Piers, W. E.; Elsegood, M. R. J.; Clegg, W.; Parvez, M. Organometallics 1998, 18, 2947. (d) Bailey, P. J.; Dick, C. M. E.; Fabore, S.; Parsons, S. J. Chem. Soc. Dalton Trans. 2000, 1655. (e) Feldman, J.; McLain, S. J.; Parthasarathy, A.; Marshall, W. J.; Calabrese, J. C.; Arthur, S. O. Organometallics 1997, 16, 1514.
(13) (a) Tung, Y. —L.; Tseng, W. —C.; Lee, C. —Y.; Hsu, P. —F.; Chi, Y.; Peng, S, -M.; Lee, G. —H. Organometallics 1999, 18, 864. (b) Shin, H. —K.; Hampden-Smith, M. J.; Kodas, T. T.; Rheingold, A. L. J. Chem. Soc. Chem. Commun. 1992, 217. (c) Iido, H.; Yuasa, Y.; Kibayashi, C.; Iitaka, Y. J. Chem. Soc. Dalton Trans. 1981, 2212. (d) Jones, D.; Roberts, A.; Cavell, K.; Keim, W.; Englert, U.; Skelton, B. W.; White, A. H. J. Chem. Soc. Dalton trans. 1998, 255.
(14) Strauch, J.; Warren, T. H.; Erker, G.; Fröhlich, R.; Saarenketo, P. Inorg. Chim. Acta. 2000, 300, 810. (b) Matilainen, L.; Klinga, M.; Leskelä, M. J. Chem. Soc. Dalton Trans. 1996, 219. (c) García-Raso, A.; Fiol, J. J.; López-Zafra, A.; Mara, I.; Eapinosa, E.; Molins, E. Polyhedron. 2000, 19, 673. (d) Darensbourg, D. J.; Rainey, P.; Yarbrough, J. Inorg. Chem. 2001, 40, 986. (e) Chisholm, M. H.; Gallucci, J. C.; Zhen, H,; Huffman, J. C. Inorg. Chem. 2001, 40, 5051. (f) Dubé, T.; Gambarotta, S.; Yap, G. Organometallics 1998, 17, 3967.
(15) Jin, X.; Novak, B. M. Macromolecules 2000, 33, 6205. (b) Kim, W. K.; Fevola, M. J.; Liable-Sands, L. M.; Rheingold, A.L.; Theopold, K. H. Organometallics 1998, 17, 4541. (c) Vollmerhaus, R.; Rahim, M.; Tomaszewski, R.; Xin, S. X.; Taylor, N. J.; Collins, S. Organometallics 2000, 19, 2161. (d) Jones, D.; Cavell, K.; Keim, W. J. Mol. Catal. A: Chem. 1999, 138, 37.
(16) Matsukawa, N.; Matsui, S.; Mitani, M.; Saito, J.; Tsuru, K.;Kashiwa, N.; Fujita, T. J. Mol. Catal. A: Chem. 2001, 169, 99.
(17) (a) Coles, M. P.; Swenson, D. C.; Jordan, R. F.; Young, V. G. Organometallics 1997, 16, 5183. (b) Coles, M. P.; Jordan, R. F. J. Am. Chem. Soc. 1997, 119, 8125. (c) Ihara, E.; Young, V. G.; Jordan, R. F. J. Am. Chem. Soc. 1998,120, 8277. (d) Korolev, A. V.; Ihara, E.; Guzei, I. A.; Young, V. G.; Jordan, R. F. J. Am. Chem. Soc. 2001, 123, 8291.
(18) Duchateau, R.; Meetsma, A.; Teuben, J. H. Chem. Commun. 1996, 223.
(19) (a) Bruce, M.; Gibson, V. C.; Redshaw, C.; Solan, G. A.; White, A. J. P.; Williams, D. J. Chem. Commun. 1998, 2523. (b) Cameron, P. A.; Gibson, V. C.; Redshaw, C.; Segal, J. A.; Solan, G. A.; White, A. J. P.; Williams, D. J. J. Chem. Soc., Dalton Trans. 2001, 1472. (c) Cameron, P. A.; Gibson, V. C.; Redshaw, C.; Segal, J. A.; Bruce, M. D.; White, A. J. P.; Williams, D. J. Chem. Commun. 1999, 1883.
(20) For example alkoxide bridged Indium complexes. (a) Bradley, D. C.; Chudzynska, H.; Frigo, D. M.; Hursthouse, M. B.; Mazid, M. A. J. Chem. Soc., Chem. Commun. 1988, 1258. (b) Bradley, D. C.; Chudzynska, H.; Frigo, D. M.; Hammond, M. E.; Hursthouse, M. B.; Mazid, M. A. Polyhedron 1990, 9, 719. (c) Suh, S.; Hofman, D, M. J. Am. Chem. Soc. 2000, 122, 9396.
(21) For example di-anionic oxo bridged di-indium complexes: Abram, S.; Maichle-Mössmer, C.; Abram, U. Polyhedron 1998, 17, 131.
(22) (a) Yutaka Matsuo, Kazushi Mashima, Kazuhide Tani, Organometallics 2001, 20, 3510. (b) Rabe, G. W.; Berube, C. D.; Yap, G. P. A.; Inorg. Chem.; (Article); 2001; 40(18); 4780.
(23) Similar phenomena have been seen, for example: Coles, M. P.; Swenson, D. C.; Jordan, R. F. Organometallics 1997, 16, 5183.
(24) Yu, R. —C.; Chang, J. —C.; Hung, C. —H.; Hunag, J. —H.; Lee, H. —I; Chen, J. —T. Inorg. Chem. 2002, 41, 6450-6455.
(25) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
(26) (a) Walther, D.; Coord. Chem. Rev. 1987, 79, 135. (b) Braunstein, P.; Matt, D.; Nobel, D. Chem. Rev. 1988, 88, 747. (c) Yin, X.; Moss, J. R. Coord. Chem. Rev. 1999, 181, 747. (d) Tsai, J. —C.; Nicholas, K. M. J. Am. Chem. Soc. 1992, 114, 5117. (d) McLouglin, M. A.; Keder, N. L.; Harrison, W. T. A.; Flesher, R. J.; Mayer, H. A.; Kaska, W. C. Inorg. Chem. 1999, 38, 3223. (e) Bianchini, C.; Ghilardi, C. A.; Meli, A.; Midollini, S.; Orlandini, A. Inorg. Chem. 1985, 24, 924. (f) Bradley, M. G.; Robert, D. A.; Geoffroy, G. L. J. Am. Chem. Soc. 1981, 103, 379.
(27) (a)P. Wei, D. A. Atwood, Inorg. Chem. 1997, 36, 4060. (b)Atwood, D. A.; Remington, M. P.; Rutherford, D. Organometallics 1996, 15, 4763. (c) Hill, M. S.; Wei, P.; Atwood, D. A. Polyhedron 1998,17,811.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top