跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/18 00:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張志全
研究生(外文):Chang Jr-Chiuan
論文名稱:含參芽基氮-氮-氮吡咯衍生物配位基金屬錯合物(鋁、鋅)的合成、鑑定、反應與開環聚合
論文名稱(外文):Syntheses, Characterization, Reactions, and Ring Opening Polymerization of Metal (M=Al, Zn) Complexes Incorporating with Tri-dentate N,N,N-Substituted pyrrolyl Ligands
指導教授:黃瑞賢黃瑞賢引用關係
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
中文關鍵詞:咯
外文關鍵詞:pyrrole
相關次數:
  • 被引用被引用:0
  • 點閱點閱:126
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
參芽基吡咯衍生物配位基部分:
A. 2,5-Bis(dimethylaminomethyl)pyrrole:
一系列含吡咯衍生物配位基[C4H2NH(CH2NMe2)2-2,5] (BDMAMP)的鋁鋅金屬錯合物已經被合成並經光譜及結構鑑定,取AlCl3 分別與一、二當量的 {[C4H2N(CH2NMe2)2-2,5]Li}2 (BDMAMPLi)2 於乙醚中-78℃下反應可得錯合物 [C4H2N(CH2NMe2)2-2,5]AlCl2 1、[C4H2N(CH2NMe2)2-2,5]2AlCl,取參芽基吡咯衍生物配位基(BDMAMP)和AlR3 (R=Me, Et)反應經配位基交換分別可得錯合物[C4H2N(CH2NMe2)2-2,5]AlR2 (R=Me 3, Et 4),錯合物1和二當量AlCl3於甲苯中0℃下反應可得錯合物{AlCl[C4H2N(CH2NMe2)2-2,5][AlCl4]} 5,含吡咯衍生物配位基鋁雙烷基錯合物3和4 分別與一當量CF3SO3H經脫烷類反應可得錯合物 [C4H2N(CH2NMe2)2-2,5]AlR(SO3CF3) (R=Me 6, Et 7)。當錯合物3和4 分別與一、二當量PhNCO於甲苯中室溫下反應可分離出錯合物 {C4H2N(CH2NMe2)[CH2N(Ph)C(=NMe2)O-]}AlR2 (R=Me 8, Et 10)及 {C4H2N[(CH2N(Ph)C(=NMe2)O-]2-2,5}AlR2 (R=Me 9, Et 11),錯合物8-11對熱相當不穩定,於甲苯中會轉變為C6H5NHC(O)NMe2 12。
錯合物1分別與二當量RLi (R=Me, OiPr, AlH4, AlD4)於乙醚中-78℃或0℃下反應脫去塩類可得錯合物3、[C4H2N(CH2NMe2)2-2,5]Al(OiPr)2 13、 {AlR2[C4H2N(CH2NMe2)2-2,5]AlR3}2 (R=H 15, D 15D),錯合物13對水氣敏感,於庚烷中-20℃下進行再結晶,偶然接觸水氣會轉變為具有氫氧基當架橋的錯合物{[C4H2N(CH2NMe2)2-2,5]Al(OiPr)(μ-OH)}2 14,錯合物15和15D分別與二當量水或參芽基吡咯衍生物配位基(BDMAMP)反應經配位基重新分配可得錯合物[C4H2N(CH2NMe2)2-2,5]AlR2 (R=H 16, D 16D),相同地,錯合物16與二當量AlCl3反應可得{AlH[C4H2N(CH2NMe2)2-2,5][HAlCl3]} 18。
一系列含參芽基吡咯衍生物配位基(BDMAMP)的鋁金屬錯合物可成功地經由脫氫氣反應加以合成,錯合物15和15D分別與一、二當量有機小分子(BDMAMP, PhCCH, Ph3SiOH, Ph3CSH, 2,6-diisopropylaniline, 2,6-diisopropylphenol)經脫氫氣反應可得罕見錯合物,包括 [C4H2N(CH2NMe2)2-2,5]2AlR (R=H 17, D 17D)、[C4H2N(CH2NMe2)2-2,5]AlH(R) (R=PhCC 19, Ph3SiO 21, Ph3CS 24, 2,6-diisopropylaniline 26, 2,6-diisopropylphenol 28)、[C4H2N(CH2NMe2)2-2,5]AlD(R) (R=PhCC 19D, Ph3SiO 21D, Ph3CS 24D, 2,6-diisopropylaniline 26D, 2,6-diisopropylphenol 28D)、[C4H2N(CH2NMe2)2-2,5]AlR2 (R=PhCC 20, Ph3SiO 23, Ph3CS 25, 2,6-diisopropylaniline 27, 2,6-diisopropylphenol 29)。錯合物21或21D 對水氣敏感,於二氯甲烷中-20℃下進行再結晶,偶然接觸水氣轉變為Ph3SiOSiPh3 22。錯合物26對水氣敏感,於二氯甲烷/乙醚中-20℃下進行再結晶,偶然接觸水氣轉變為{[C4H2N(CH2NMe2)2-2,5]AlH[(μ-NPh(iPr)2-2,6)]AlH[NHPh(iPr)2-2,6]} 26a,取ZnCl2和二當量BDMAMPLi或ZnEt2與二當量BDMAMP於乙醚中0℃下反應可得錯合物[C4H2N(CH2NMe2)2-2,5]2Zn 30。
藉由變溫之氫核磁共振光譜實驗,發現五配位鋁錯合物2、17(17D)於溶液中會進行流變反應,在溫度為-90、-15℃時,訊號有合一( coalescence ) 的現象,計算得此時的活化能大約為ΔG≠=9.0, 12.4 kcal/mole。所有合成之新化合物藉由氫和碳之核磁共振光譜加以鑑定,化合物1、2、3、4、12、14、15、15D、16、16D、20、23、24、24D、26、26a和30再結晶可得適當晶體並藉由X-ray單晶繞射儀加以鑑定。
B. Di(pyrrolyl-α-methyl)methylamine:
許多含參芽基吡咯衍生物配位基Di(pyrrolyl-α-methyl)methylamine (DPMA)鋁金屬錯合物已經被合成並經光譜鑑定,取AlCl3與一當量Li[(C4H3N)CH2-α]2NMe於乙醚中0℃下反應脫去塩類可得錯合物 {[(C4H3N)CH2-α]2NMe}AlCl•Et2O 31,錯合物31或配位基DPMA與一當量LiAlH4於乙醚中0℃下反應可得錯合物{[(C4H3N)CH2-α]2NMe}AlH•Et2O 32, AlR3 (R=Me, Et)與一當量DPMA於甲苯中50~60℃下經配位基交換可得錯合物{[(C4H3N)CH2-α]2NMe}AlR (R=Me 33, Et 34),所有合成之新化合物藉由氫和碳之核磁共振光譜加以鑑定。
C. [2,5-(CH2NMe2)2C4H2N─]C(O)NHPh
許多含參芽基吡咯衍生物配位基[2,5-(CH2NMe2)2C4H2N─]C(O)NHPh (PyNCO)鋁金屬錯合物已經被合成並經光譜及結構鑑定,AlR3 (R=Me, Et)與一當量PyNCO於甲苯中0℃下經配位基交換可得[2,5-(CH2NMe2)2C4H2N─]C(O)NPh}AlR2 (R=Me 35, Et 36),配位基PyNCO與錯合物35、36對水氣敏感,分別於二氯甲烷中-20℃下進行再結晶,偶然接觸水氣轉變為(PhNCO)3 37,ZnCl2與PyNCO及NEt3於乙醚中0℃下反應可得到非預期的化合物PhNH(CO)NHPh 38。所有合成之新化合物藉由氫和碳之核磁共振光譜加以鑑定,化合物35、36和38再結晶可得適當晶體並藉由X-ray單晶繞射儀加以鑑定。
錯合物LiBDMAMP、1、16、21、23、24、26和28已經應用於ε-環己內酮的開環聚合反應上。在溫和的條件下,錯合物LiBDMAMP、16、24和26具有中度活性;但錯合物1、21、23和28則不具有催化活性。隨著單體ε-環己內酮與催化劑16、24和26比例的增加,數目平均分子量(Mn)會成線性關係增加,且聚合物的產率亦相當的高。
Abstract
Tridentate Substituted Pyrrolyl Ligands:
A. 2,5-Bis(dimethylaminomethyl)pyrrole:A series of aluminum and zinc metal complexes featuring the pyrrolyl ligand, [C4H2NH(CH2NMe2)2-2,5] (BDMAMP), have been prepared and characterized spectroscopically and structurally. Reactions of AlCl3 with one or two equiv. of {[C4H2N(CH2NMe2)2-2,5]Li}2 (BDMAMPLi)2 in diethyl ether at -78℃ via metathesis afford [C4H2N(CH2NMe2)2-2,5]AlCl2 1 and [C4H2N(CH2NMe2)2-2,5]2AlCl 2, respectively. Reactions of BDMAMP with AlR3 via ligand exchange afford [C4H2N(CH2NMe2)2-2,5]AlR2 (R=Me 3, Et 4). Complex 1 reacts with two equiv. of AlCl3 in toluene at 0℃ to afford {AlCl[C4H2N(CH2NMe2)2-2,5][AlCl4]} 5. Pyrrolyl substituted aluminum dialkyl complexes 3 and 4 react with one equiv. of CF3SO3H to afford [C4H2N(CH2NMe2)2-2,5]AlR(SO3CF3) (R=Me 6, Et 7) via alkane elimination. While complex 3 and 4 react with one, two equiv. of PhNCO in toluene at RT, {C4H2N(CH2NMe2)[CH2N(Ph)C(=NMe2)O-]}AlR2 (R=Me 8, Et 10) and {C4H2N[(CH2N(Ph)C(=NMe2)O-]2-2,5}AlR2 (R=Me 9, Et 11) can be isolated. Complexes 8-11 are not very thermal stable, which are converted to 12 under toluene refluxary temperature.
Reactions of complex 1 with two equiv. of RLi (R=Me, OiPr, AlH4, AlD4) in diethyl ether at -78℃ or 0℃ generate complex 3, [C4H2N(CH2NMe2)2-2,5]Al(OiPr)2 13, and {AlR2[C4H2N(CH2NMe2)2-2,5]AlR3}2 (R=H 15, D 15D) via transmetallation, respectively. Complex 13 is moisture sensitive, which is converted to hydroxyl-bridging {[C4H2N(CH2NMe2)2-2,5]Al(OiPr)(μ-OH)}2 14 by exposuring complex 13 in heptane to air occasionally at -20℃. Complexes 15 and 15D react with two equiv. of H2O or BDMAMP to generate [C4H2N(CH2NMe2)2-2,5]AlR2 (R=H 16, D 16D) via ligand redistribution. Similarly, reaction of complex 16 with two equiv. of AlCl3 to generate {AlH[C4H2N(CH2NMe2)2-2,5][HAlCl3]} 18.
A series of aluminum metal complexes containing BDMAMP ligand can be synthesized via hydrogen elimination. Reactions of complexes 15 and 15D with one or two equiv. of small organic molecules (BDMAMP, PhCCH, Ph3SiOH, Ph3CSH, 2,6-diisopropylaniline, 2,6-diisopropylphenol) afford rare complexes, where include [C4H2N(CH2NMe2)2-2,5]2AlR (R=H 17, D 17D), [C4H2N(CH2NMe2)2-2,5]AlH(R) (R=PhCC 19, Ph3SiO 21, Ph3CS 24, 2,6-diisopropylaniline 26, 2,6-diisopropylphenol 28), [C4H2N(CH2NMe2)2-2,5]AlD(R) (R=PhCC 19D, Ph3SiO 21D, Ph3CS 24D, 2,6-diisopropylaniline 26D, 2,6-diisopropylphenol 28D), and [C4H2N(CH2NMe2)2-2,5]AlR2 (R=PhCC 20, Ph3SiO 23, Ph3CS 25, 2,6-diisopropylaniline 27, 2,6-diisopropylphenol 29). Complexes 21 and 21D are moisture sensitive, which were converted to Ph3SiOSiPh3 22 by exposuring complexes 21 and 21D in dichloromethane to air occasionally at -20℃. Complex 26 is moisture sensitive, which was converted to {[C4H2N(CH2NMe2)2-2,5]AlH[(μ-NPh(iPr)2-2,6)]AlH[NHPh(iPr)2-2,6]} 26a via ligand redistribution by exposuring complex 26 in dichloromethane/diethyl ether to air occasionally at -20℃. Both of the reaction of ZnCl2 with two equiv. of BDMAMPLi and ZnEt2 with two equiv. of BDMAMP in diethyl ether at 0℃ generate [C4H2N(CH2NMe2)2-2,5]2Zn 30.
Variable temperature 1H NMR spectroscopic experiments reveal that the five coordinated aluminum complexes 2 and 17(17D) are fluxional in solution and results a coalescence temperature at -90, -15C, from which ΔG is calculated at ca. 9.0, 12.4 Kcal/mole, respectively. All the new complexes have been characterized by 1H and 13C NMR spectroscopy and compounds 1, 2, 3, 4, 12, 14, 15, 15D, 16, 16D, 20, 23, 24, 24D, 26, 26a, and 30 have also determined by X-ray crystallography.
B. Di(pyrrolyl-α-methyl)methylamine:Several aluminum metal complexes featuring the pyrrolyl ligand, di(pyrrolyl-α-methyl)methylamine (DPMA), have been prepared and characterized spectroscopically. Reaction of AlCl3 with one equiv. of Li[(C4H3N)CH2-α]2NMe in diethyl ether at 0℃ afford {[(C4H3N)CH2-α]2NMe}AlCl•Et2O 31 via metathesis. Complex 31 or DPMA react with one equiv. of LiAlH4 in diethyl ether at 0℃ to generate {[(C4H3N)CH2-α]2NMe}AlH•Et2O 32. Reactions of AlR3 (R=Me, Et) with one equiv. of DPMA in toluene at 50~60℃ afford {[(C4H3N)CH2-α]2NMe}AlR (R=Me 33, Et 34) via ligand exchange. All the new complexes have been characterized by 1H and 13C NMR spectroscopy.
C. [2,5-(CH2NMe2)2C4H2N─]C(O)NHPh:Several aluminum metal complexes containing pyrrolyl ligand, [2,5-(CH2NMe2)2C4H2N─]C(O)NHPh (PyNCO), have been prepared and characterized spectroscopically and structurally. Reactions of AlR3 with one equiv. of PyNCO in toluene at 0℃ afford {[2,5-(CH2NMe2)2C4H2N─]C(O)NPh}AlR2 (R=Me 35, Et 36) via ligand exchange. PyNCO ligand and complex 35, 36 are moisture sensitive, which were converted to (PhNCO)3 37 by exposuring in dichloromethane to air occasionally at -20℃. Reaction of ZnCl2 with PyNCO and NEt3 in diethyl ether at 0℃ afford the unexpected organic molecule PhNH(CO)NHPh 38. All the new complexes have been characterized by 1H and 13C NMR spectroscopy and compounds 35, 36, and 38 have been determined by X-ray crystallography.
Complexes LiBDMAMP, 1, 16, 21, 23, 24, 26, and 28 have been employed in the application of ring-opening polymerization of ε-caprolactone. While complexes LiBDMAMP, 16, 24, and 26 show moderate activity of ring-opening polymerization, complexes 1, 21, 23, and 28 show no activity under mild condition. Increasing the ratio of monomer and complexes 16, 24, and 26, the Mn will increase and show linear relation, respectively. All of the polymers which prepared by complexes 16, 24, and 26 have high yield.
目次
章節 頁次
圖次
表次
式次
英文摘要 I
中文摘要 V
第一章 緒論 1
第二章 實驗部分 10
第一節 一般實驗 10
第二節 物理性質之測量 10
第三節 錯合物之合成 11
3-1-1 合成2,5-Bis(dimethylaminomethyl)pyrrole(BDMAMP) 12
3-1-2 合成{[C4H2N(CH2NMe2)2-2,5]Li}2 12
3-1-3 合成 [C4H2N(CH2NMe2)2-2,5]AlCl2 (1) 13
3-1-4 合成 [C4H2N(CH2NMe2)2-2,5]2AlCl (2) 13
3-1-5 合成 [C4H2N(CH2NMe2)2-2,5]AlMe2 (3) 14
3-1-6 合成 [C4H2N(CH2NMe2)2-2,5]AlEt2 (4) 15
3-1-7 合成 {AlCl[C4H2N(CH2NMe2)2-2,5][AlCl4]} (5) 16
3-1-8 合成 [C4H2N(CH2NMe2)2-2,5]AlMe(SO3CF3) (6) 16
3-1-9 合成 [C4H2N(CH2NMe2)2-2,5]AlEt(SO3CF3) (7) 17
3-1-10 合成 {C4H2N(CH2NMe2)[CH2N(Ph)C(=NMe2)O─]} AlMe2 (8)
17
3-1-11 合成 {C4H2N[(CH2N(Ph)C(=NMe2)O─]2─2,5} AlMe2 (9) 18
3-1-12 合成 {C4H2N(CH2NMe2)[CH2N(Ph)C(=NMe2)O─]} AlEt2 (10)
19
3-1-13 合成 {C4H2N[(CH2N(Ph)C(=NMe2)O─]2─2,5} AlEt2 (11)
19
3-1-14 合成 C6H5NHC(O)NMe2 (12) 20
3-1-15 合成 [C4H2N(CH2NMe2)2-2,5]Al(OiPr)2 (13) 21
3-1-16 合成{[C4H2N(CH2NMe2)2-2,5]Al(OiPr)(μ-OH)}2 (14)
21
3-1-17 合成 {AlH2[C4H2N(CH2NMe2)2-2,5]AlH3}2 (15)
{AlD2[C4H2N(CH2NMe2)2-2,5]AlD3}2 (15D)
22
3-1-18 合成 [C4H2N(CH2NMe2)2-2,5]AlH2 (16)
[C4H2N(CH2NMe2)2-2,5]AlD2 (16D)
23
3-1-19 合成 [C4H2N(CH2NMe2)2-2,5]2AlH (17)
[C4H2N(CH2NMe2)2-2,5]2AlD (17D)
24
3-1-20 合成 {AlH[C4H2N(CH2NMe2)2-2,5][HAlCl3]} (18) 25
3-1-21 合成 [C4H2N(CH2NMe2)2-2,5]AlH(C≡CPh) (19)
[C4H2N(CH2NMe2)2-2,5]AlD(C≡CPh) (19D)
26
3-1-22 合成 [C4H2N(CH2NMe2)2-2,5]Al(C≡CPh)2 (20) 26
3-1-23 合成 [C4H2N(CH2NMe2)2-2,5]AlH(OSiPh3) (21)
[C4H2N(CH2NMe2)2-2,5]AlD(OSiPh3) (21D)
Ph3SiOSiPh3 (22)
27
3-1-24 合成 [C4H2N(CH2NMe2)2-2,5]Al(OSiPh3)2 (23) 28
3-1-25 合成 [C4H2N(CH2NMe2)2-2,5]AlH(SCPh3) (24)
[C4H2N(CH2NMe2)2-2,5]AlD(SCPh3) (24D)
29
3-1-26 合成 [C4H2N(CH2NMe2)2-2,5]Al(SCPh3)2 (25) 30
3-1-27 合成 [C4H2N(CH2NMe2)2-2,5]AlH[NHPh(iPr)2-2,6]} (26){[C4H2N(CH2NMe2)2-2,5]AlD[NHPh(iPr)2-2,6]} (26D)
{[C4H2N(CH2NMe2)2-2,5]AlH[(μ-NPh(iPr)2-2,6)]AlH [NHPh(iPr)2-2,6]} (26a)
30
3-1-28 合成 {[C4H2N(CH2NMe2)2-2,5]Al[NHPh(iPr)2-2,6]2} (27)
31
3-1-29 合成 {[C4H2N(CH2NMe2)2-2,5]AlH[OPh(iPr)2-2,6]} (28)
{[C4H2N(CH2NMe2)2-2,5]AlD[OPh(iPr)2-2,6]} (28D)
32
3-1-30 合成 {[C4H2N(CH2NMe2)2-2,5]Al[OPh(iPr)2-2,6]2} (29)
33
3-1-31 合成 [C4H2N(CH2NMe2)2-2,5]2Zn (30) 34
3-2-1 合成 Di(pyrrolyl-α-methyl)methylamine (DPMA) 34
3-2-2 合成 Dilithium salt of Di(pyrrolyl-α-methyl) methylamine
35
3-2-3 合成 {[(C4H3N)CH2-α]2NMe}AlCl•Et2O (31) 36
3-2-4 合成 {[(C4H3N)CH2-α]2NMe}AlH•Et2O (32) 36
3-2-5 合成 {[(C4H3N)CH2-α]2NMe}AlMe (33) 37
3-2-6 合成 {[(C4H3N)CH2-α]2NMe}AlEt (34) 38
3-3-1 合成 [2,5-(CH2NMe2)2C4H2N─]C(O)NHPh (PyNCO) 38
3-3-2 合成{[2,5-(CH2NMe2)2C4H2N─]C(O)NPh}AlMe2 (35)
39
3-3-3 合成{[2,5-(CH2NMe2)2C4H2N─]C(O)NPh}AlEt2 (36) 40
3-3-4 合成 (PhNCO)3 (37) 40
3-3-5 合成 PhNH(CO)NHPh (38) 40
第三章 結果與討論 42
第一節 前言 42
第二節 含參芽基2,5-Bis(dimethylaminomethyl)pyrrole 配位基鋁、鋅錯合物之鑑定與討論
42
2-1 2,5-Bis(dimethylaminomethyl)pyrrole配位基及其塩類
42
2-2 [C4H2N(CH2NMe2)2-2,5]AlCl2 (1) 44
2-3 [C4H2N(CH2NMe2)2-2,5]2AlCl (2) 46
2-4 [C4H2N(CH2NMe2)2-2,5]AlMe2 (3) 50
2-5 [C4H2N(CH2NMe2)2-2,5]AlEt2 (4) 52
2-6 {AlCl[C4H2N(CH2NMe2)2-2,5][AlCl4]} (5) 54
2-7 [C4H2N(CH2NMe2)2-2,5]AlMe(SO3CF3) (6)
[C4H2N(CH2NMe2)2-2,5]AlEt(SO3CF3) (7)
55
2-8 {C4H2N(CH2NMe2)[CH2N(Ph)C(━NMe2)O─]} AlMe2 (8)
{C4H2N(CH2NMe2)[CH2N(Ph)C(━NMe2)O─]} AlEt2 (10)
57
2-9 {C4H2N[(CH2N(Ph)C(━NMe2)O─]2,5}AlMe2 (9)
{C4H2N[(CH2N(Ph)C(━NMe2)O─]2,5}AlEt2 (11)
58
2-10 C6H5NHC(O)NMe2 (12) 59
2-11 [C4H2N(CH2NMe2)2-2,5]Al(OiPr)2 (13) 61
2-12{[C4H2N(CH2NMe2)2-2,5]Al(OiPr)(μ-OH)}2 (14) 63
2-13 {AlH2[C4H2N(CH2NMe2)2-2,5]AlH3}2 (15)
{AlD2[C4H2N(CH2NMe2)2-2,5]AlD3}2 (15D)
65
2-14 [C4H2N(CH2NMe2)2-2,5]AlH2 (16)
[C4H2N(CH2NMe2)2-2,5]AlD2 (16D)
68
2-15 [C4H2N(CH2NMe2)2-2,5]2AlH (17)
[C4H2N(CH2NMe2)2-2,5]2AlD (17D)
72
2-16 {AlH[C4H2N(CH2NMe2)2-2,5][HAlCl3]} (18) 75
2-17 [C4H2N(CH2NMe2)2-2,5]AlH(C≡CPh) (19)
[C4H2N(CH2NMe2)2-2,5]AlD(C≡CPh) (19D)
75
2-18 [C4H2N(CH2NMe2)2-2,5]Al(C≡CPh)2 (20) 78
2-19 [C4H2N(CH2NMe2)2-2,5]AlH(OSiPh3) (21)
[C4H2N(CH2Nme2)2-2,5]AlD(OSiPh3) (21D)
Ph3SiOSiPh3 (22)
80
2-20 [C4H2N(CH2NMe2)2-2,5]Al(OSiPh3)2 (23) 81
2-21 [C4H2N(CH2NMe2)2-2,5]AlH(SCPh3) (24)
[C4H2N(CH2NMe2)2-2,5]AlD(SCPh3) (24D)
83
2-22 [C4H2N(CH2NMe2)2-2,5]Al(SCPh3)2 (25) 86
2-23 {[C4H2N(CH2NMe2)2-2,5]AlH[NHPh(iPr)2-2,6]} (26) {[C4H2N(CH2NMe2)2-2,5]AlD[NHPh(iPr)2-2,6]} (26D)
{[C4H2N(CH2NMe2)2-2,5]AlH[(μ-NPh(iPr)2- 2,6)]Al H[NHPh(iPr)2-2,6]} (26a)
87
2-24 {[C4H2N(CH2NMe2)2-2,5]Al[NHPh(iPr)2-2,6]2} (27) 91
2-25 {[C4H2N(CH2NMe2)2-2,5]AlH[OPh(iPr)2-2,6]} (28)
[C4H2N(CH2NMe2)2-2,5]AlD[OPh(iPr)2-2,6]} (28D) 91
2-26 {[C4H2N(CH2NMe2)2-2,5]Al[OPh(iPr)2-2,6]2} (29)
92
2-27 [C4H2N(CH2NMe2)2-2,5]2Zn (30) 93
第三節 含參芽基Di(pyrrolyl-α-methyl)methylamine配位基鋁錯合物之鑑定與討論
94
3-1 Di(pyrrolyl-α-methyl)methylamine配位基及其塩類
94
3-2 {[(C4H3N)CH2-α]2NMe}AlCl•Et2O (31) 95
3-3 {[(C4H3N)CH2-α]2NMe}AlH•Et2O (32) 96
3-4 {[(C4H3N)CH2-α]2NMe}AlMe (33) 96
3-5 {[(C4H3N)CH2-α]2NMe}AlEt (34) 96
第四節 含參芽基2,5-Bis(dimethylaminomethyl)pyrrole-1- carboxylic acid phenylamide配位基鋁錯合物之鑑定與討論
97
4-1 [2,5-(CH2NMe2)2C4H2N─]C(O)NHPh配位基 97
4-2 {[2,5-(CH2NMe2)2C4H2N─]C(O)NPh}AlMe2 (35) 97
4-3 {[2,5-(CH2NMe2)2C4H2N─]C(O)NPh}AlEt2 (36) 100
4-4 (PhNCO)3 (37) 102
4-5 PhNH(CO)NHPh (38) 102
第五節 含參芽基吡咯衍生物配位基鋁、鋅錯合物之發展與應用
103
第四章
ε-環己內酮(ε-caprolactone)之開環聚合反應 104
第一節 前言 104
第二節 一般實驗 105
第三節 聚合反應 105
3-1 LiBDMAMP對ε-環己內酮之開環聚合反應 106
3-2 [C4H2N(CH2NMe2)2-2,5]AlCl2對ε-環己內酮之開環聚合反應
106
3-3 [C4H2N(CH2NMe2)2-2,5]AlH2對ε-環己內酮之開環聚合反應
107
3-4 [C4H2N(CH2NMe2)2-2,5]AlH(OSiPh3)對ε-環己內酮之開環聚合反應
108
3-5 [C4H2N(CH2NMe2)2-2,5]Al(OSiPh3)2對ε-環己內酮之開環聚合反應
108
3-6 [C4H2N(CH2NMe2)2-2,5]AlH(SCPh3)對ε-環己內酮之開環聚合反應
109
3-7 {[C4H2N(CH2NMe2)2-2,5]AlH[NHPh(iPr)2-2,6]}對ε-環己內酮之開環聚合反應
109
3-8 {[C4H2N(CH2NMe2)2-2,5]AlH[OPh(iPr)2-2,6]}對ε-環己內酮之開環聚合反應
110
3-9 聚合反應綜合比較 111
參考資料 113
圖次
Figure 頁次
Figure 3-1. The ORTEP plot of LiBDMAMP.
43
Figure 3-2. The ORTEP plot of Complex 1.
45
Figure 3-3. The ORTEP plot of Complex 2.
47
Figure 3-4. Variable-Temperature 1H NMR (200 MHz NMR) Spectra of Complex 2 in CD2Cl2.
49
Figure 3-5. The ORTEP plot of Complex 3.
51
Figure 3-6. The ORTEP plot of Complex 4.
53
Figure 3-7. The ORTEP plot of Complex 12.
60
Figure 3-8. The ORTEP plot of Complex 14.
64
Figure 3-9. The ORTEP plot of Complex 15.
66
Figure 3-10. The ORTEP plot of Complex 15D.
67
Figure 3-11. The ORTEP plot of Complex 16.
70
Figure 3-12. The ORTEP plot of Complex 16D.
71
Figure 3-13. Variable-Temperature 1H NMR (200 MHz NMR) Spectra of Complex 17(17D) in CDCl3.
74
Figure 3-14. The ORTEP plot of Complex 20.
79
Figure 3-15. The ORTEP plot of Complex 23.
82
Figure 3-16. The ORTEP plot of Complex 24.
84
Figure 3-17. The ORTEP plot of Complex 24D.
85
Figure 3-18. The ORTEP plot of Complex 26.
88
Figure 3-19. The ORTEP plot of Complex 26a.
90
Figure 3-20. The ORTEP plot of Complex 30.
94
Figure 3-21. The ORTEP plot of Complex 35.
99
Figure 3-22. The ORTEP plot of Complex 36.
101
Figure 3-23. The ORTEP plot of Complex 38.
102
Figure 4-3-1. 錯合物16之Mn對[M]/[C]之關係圖
111
Figure 4-3-2. 錯合物24之Mn對[M]/[C]之關係圖
111
Figure 4-3-3. 錯合物26之Mn對[M]/[C]之關係圖
112
表次
Table 頁次
Table 3-1. Selected Bond Distances (Å) and Angles () for LiBDMAMP .
43
Table 3-2. Selected Bond Distances (Å) and Angles () for Complex 1.
45
Table 3-3. Selected Bond Distances (Å) and Angles () for Complex 2.
48
Table 3-4. Selected Bond Distances (Å) and Angles () for Complex 3.
51
Table 3-5. Selected Bond Distances (Å) and Angles () for Complex 4.
53
Table 3-6. Selected Bond Distances (Å) and Angles () for Complex
12.
60
Table 3-7. Selected Bond Distances (Å) and Angles () for Complex
14.
64
Table 3-8. Selected Bond Distances (Å) and Angles () for Complex
15.
66
Table 3-9. Selected Bond Distances (Å) and Angles () for Complex
15D.
67
Table 3-10. Selected Bond Distances (Å) and Angles () for Complex
16.
71
Table 3-11. Selected Bond Distances (Å) and Angles () for Complex
16D.
71
Table 3-12. Selected Bond Distances (Å) and Angles () for Complex
20.
80
Table 3-13. Selected Bond Distances (Å) and Angles () for Complex
23.
82
Table 3-14. Selected Bond Distances (Å) and Angles () for Complex
24.
85
Table 3-15. Selected Bond Distances (Å) and Angles () for Complex
24D. 86
Table 3-16. Selected Bond Distances (Å) and Angles () for Complex
26.
89
Table 3-17. Selected Bond Distances (Å) and Angles () for Complex
26a.
90
Table 3-18. Selected Bond Distances (Å) and Angles () for Complex
30.
94
Table 3-19. Selected Bond Distances (Å) and Angles () for Complex
35.
100
Table 3-20. Selected Bond Distances (Å) and Angles () for Complex
36.
101
Table 4-3-1. LiBDMAMP對ε-環己內酮之開環聚合反應
106
Table 4-3-2. 錯合物1對ε-環己內酮之開環聚合反應
107
Table 4-3-3. 錯合物16對ε-環己內酮之開環聚合反應
107
Table 4-3-4. 錯合物21對ε-環己內酮之開環聚合反應
108
Table 4-3-5. 錯合物24對ε-環己內酮之開環聚合反應
109
Table 4-3-6. 錯合物26對ε-環己內酮之開環聚合反應
110
Table 4-3-7. 錯合物28對ε-環己內酮之開環聚合反應
110
式次
Scheme 頁次
Scheme 1-1. 第四族metallocenes和CGC系統之錯合物
1
Scheme 1-2. β-二酮胺、酮胺和希夫鹼等系統配位基
2
Scheme 1-3. 烯類聚合催化反應機制
3
Scheme 1-4. 陽離子化的三個途徑
4
Scheme 1-5. Jordan發表β-二酮胺配位基鋁烷基陽離子錯合物可以和乙烯做不尋常的可逆環化加成反應
4
Scheme 1-6. Smith、 Power及Collins發表具有β-二酮胺或酮胺配位基的早期過渡金屬或是13族金屬元素錯合物
5
Scheme 1-7. 開環聚合反應之反應機構主要是以具有 LnMOR或LnMSR形式的金屬氧(硫)烷錯合物
6
Scheme 1-8. Lin、Darensbourg、Coates發表開環聚合之金屬錯合物
6
Scheme 1-9. Darensbourg研究群對於環氧己烷和二氧化碳進行共聚合反應的報導
7
Scheme 1-10. 二氧化碳和環氧己烷的共聚合反應機構
7
Scheme 1-11. MPV反應醇類上氫原子轉移至醛類或酮類之反應機構
8
Scheme 1-12. Lin所發表關於MPV還原反應之相關報導
9
Scheme 1-13. 參芽基吡咯衍生物配位基BDMAMP、DPMA、PyNCO
9
Scheme 3-1. 鋁金屬錯合物1~7之合成反應方程式
44
Scheme 3-2. 錯合物2流變現象(on-off)之平衡反應式
48
Scheme 3-3. Atwood研究群發表含Salen配位基鋁金屬陽離子錯合物
55
Scheme 3-4. Pregosin研究群發表釕金屬錯合物與CF3SO3H之反應
56
Scheme 3-5. 鋁金屬錯合物8~12之合成反應方程式
57
Scheme 3-6. 錯合物8和10之反應機構 58
Scheme 3-7. 錯合物9和11之反應機構
59
Scheme 3-8. 鋁金屬錯合物13~18之合成及相關反應方程式
61
Scheme 3-9. Lin所發表關於MPV還原反應之反應機構
62
Scheme 3-10. 錯合物13於MPV還原反應之應用
62
Scheme 3-11. 錯合物16與ZnEt2反應得到錯合物4
70
Scheme 3-12. 鋁金屬錯合物17及17D之合成反應方程式
73
Scheme 3-13. 錯合物17及17D流變現象(on-off)之平衡反應式
74
Scheme 3-14. 鋁金屬錯合物19~27之合成反應方程式
76
Scheme 3-15. 錯合物16與20間之配位基交換平衡反應
77
Scheme 3-16. 鋁金屬錯合物19~28之同位素衍生物19D~28D
77
Scheme 3-17. 錯合物20之異核雙金屬錯合物相關反應
78
Scheme 3-18. 錯合物23於MPV還原反應之應用
81
Scheme 3-19. 錯合物26分子間配位基交換作用之平衡反應式
89
Scheme 3-20. 錯合物26分解轉變為錯合物26a
90
Scheme 3-21. 錯合物28、29、30之合成反應方程式
92
Scheme 3-22. 鋁金屬錯合物31~34之合成反應方程式
95
Scheme 3-23. 參芽基吡咯衍生物配位基PyNCO之合成反應機構
97
Scheme 3-24. 鋁金屬錯合物35~38之合成反應方程式
98
Scheme 3-25. 錯合物35兩種結構形式之平衡反應式
98
Scheme 3-26. 錯合物36兩種結構形式之平衡反應式
100
Scheme 4-1. 金屬氧烷錯合物對ε-環己內酮進行開環聚合之催化反應機構
104
參考資料
1. Britovsek, J. P.; Gibson, V. C.; Wass, D. F. Angew. Chem. Int. Ed. 1999, 38, 428.
2. (a) Keiji, M.; Takayuki I.; Tadashi, S.; Hisashi Y. J. Am. Chem. Soc. 1988, 110, 310. (b) F. Rebiere; O. Riant; H. B. Kagan, Tetrahedron: Asymmetry 1990, 1, 199.
3. (a) Staroeieyski, K. B., In Chemistry of Aluminium, Gallium, Indium and Thallium. Downs, A. J., Ed., Chapman and Hall: London,UK, 1993, pp322-371. (b) Eisch, J. J. In Comprehensice Organometallic Chemistry, Abel E. W.; Stone, F. G. A., Wilkinson, G., Eds, Elsevier: Oxford, UK. 1995, Vol, 11,Chapter 6.
4. (a) Yamamoto, H. “Lewis acids in organic synthesis”; Wiley-VCH 2000. (b)Boor, J., Jr. “Ziegler-Natta catalysts and polymerization”; Academic: New Yory, 1979. (c) Joseph A. R. Schmidt, John Arnold. Organometallics 2002, 21, 2306. (d) Atwood D. A. Coord. Chem. Rev 1998, 176, 407.
5. (a) SonBinh, T. N. Org. Lett., 2001, 3, 2391 (b) Lin, C. H.; Lin, C. C. Organometallics 1998, 17, 3599.
6. (a)Strauch, J.; Warren, T. H.; Erker, G.; Fröhlich, R.; Saarenketo, P. Inorg. Chim. Acta. 2000, 300, 810. (b) Matilainen, L.; Klinga, M.; Leskelä, M. J. Chem. Soc. Dalton Trans. 1996, 219. (c) García-Raso, A.; Fiol, J. J.; López-Zafra, A.; Mara, I.; Eapinosa, E.; Molins, E. Polyhedron. 2000, 19, 673. (d) Darensbourg, D. J.; Rainey, P.; Yarbrough, J. Inorg. Chem. 2001, 40, 986. (e) Chisholm, M. H.; Gallucci, J. C.; Zhen, H,; Huffman, J. C. Inorg. Chem. 2001, 40, 5051. (f) Dubé, T.; Gambarotta, S.; Yap, G. Organometallics 1998, 17, 3967.
7. (a) Vernon, C. G.; Andrew, J. P. W. Chem. Commun.,1998, 2523. (b) Richaed, F. J.; Martyn P. J. Am. Chem. Soc. 1997, 119, 8125.
8. (a) Parks, J. E.; Holm, R. H. Inorg. Chem. 1968, 7, 1408. (b) Hitchcock, P. B.; Lapprt, M. F.; Layh, M. Chem. Commun. 1998, 201. (c) Clegg, W.; Cope, E. K.; Edwards, A. J.; Mair, F. S. Inorg. Chem. 1998, 37, 2317. (d) Cheng, M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc., 1998, 120, 11018. (e) Cheng, M.; Attygalle, A. B.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc., 1999, 121, 11583 (f) Chamberlain, B. M.; Cheng, M.; Moore, D. R.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc., 2001, 123, 3229. (g) Cheng, M.; Moore, D. R.; Reczek, J. J.; Chamberlain, B. M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc., 2001, 123, 8739. (h) Qian, B.; Ward, D. L.; Smith, M. R., III. Organometallics 1998, 17, 3070. (i) Qian, B.; Scanlon, W. J., IV; Smith, M. R., III. Organometallics 1999, 18, 1693. (j) Kakaliou, L.; Scanlon, W. J., IV; Qian, B.; Baek, S. W.; Smith, M. R., III. Inorg. Chem. 1999, 38, 5964. (k) Qian, B.; Baek, S. W.; Smith, M. R., III. Polyhedron 1999, 18, 2405. (l) Prust, J.; Stasch, A.; Zheng, W.; Roesky, H. W.; Alexopoulos, E,; Usón, I.; Böhler, O.; Schuchardt, T. Organometallics 2001, 20, 3825. (m) Cui, C.; Roesky, H. W.; Hao, H.; Schmidt, H. —G.; Noltemeyer, M. Angew. Chem. Int. Ed. 2000, 39, 1815. (n) Cui, C.; Roesky, H. W.; Hao, H.; Schmidt, H. —G.; Noltemeyer, M. Angew. Chem. Int. Ed. 2000, 39, 4531. (o) Cui, C.; Roesky, H. W.; Schmidt, H. —G.; Noltemeyer, M.; Hao, H.; Cimpoesu, F. Angew. Chem. Int. Ed. 2000, 39, 4274. (p) Stender, M.; Eichler, B. E.; Hardman, N. J.; Power, P. P.; Prust, J.; Noltemeyer, M.; Roesky, H. W. Inorg. Chem. 2001, 40, 2794. (q) Radzewich, C. E.; Guzei, I. A.; Jordan, R. F. J. Am. Chem. Soc. 1999, 121, 8673. (r) Radzewich, C. E.; Coles, M. P.; Jordan, R. F. J. Am. Chem. Soc. 1998, 120, 9384. (s) Hardman, N. J.; Power, P. P. Inorg. Chem. 2001, 40, 2474. (t) Lee, L. W. M.; Piers, W. E.; Elsegood, M. R. J.; Clegg, W.; Parvez, M. Organometallics 1998, 18, 2947. (u) Bailey, P. J.; Dick, C. M. E.; Fabore, S.; Parsons, S. J. Chem. Soc. Dalton Trans. 2000, 1655. (v) Budzelaar, P. H. M.; de Gelder, R.; Gal, A. W. Organometallics 1998, 19, 4121. (w) Budzelaar, P. H. M.; Van Oort, A. B.; Orpen, A. G. Eur. J. Inog. Chem. 1998, 1485. (x) Budzelaar, P. H. M.; Moonen, N. N. P.; de Gelder, R.; Smits, J. M. M.; Gal, A. W. Eur. J. Inorg. Chem. 2000, 753. (y) Vollmerhaus, R.; Rahim, M.; Tomaszewski, R.; Xin, S.; Taylor, N. J.; Collins, S. Organometallics 2000, 19, 2161. (z) Rahim, M.; Taylor, N. J.; Xin, S.; Collins, S. Organometallics 1998, 17, 1315. (aa) Hitchcock, P. B.; Lappert, M. F.; Liu, D. —S. J. Chem. Soc. Chem. Commun. 1994, 1699. (ab) Hitchcock, P. B.; Lappert, M. F.; Liu, D. —S. J. Chem. Soc. Chem. Commun. 1994, 2637. (ac) Feldman, J.; McLain, S. J.; Parthasarathy, A.; Marshall, W. J.; Calabrese, J. C.; Arthur, S. O. Organometallics 1997, 16, 1514. (ad) Gibson, V. C.; Segal, J. A.; White, A. J. P.; Williams, D. J. J. Am. Chem. Soc. 2000, 122, 7120. (ae) Gibson, V. C.; Maddox, P. J.; Newton, C.; Redshaw, C.; Solan, G. A.; White, A. J. P.; Williams, D. J. Chem. Commun. 1998, 1651.
9. (a) Tung, Y. —L.; Tseng, W. —c,; Lee, C. —Y.; Hsu, P. —F.; Chi, Y.; Peng, S, -M.; Lee, G. —H. Organometallics 1999, 18, 864. (b) Shin, H. —K.; Hampden-Smith, M. J.; Kodas, T. T.; Rheingold, A. L. J. Chem. Soc. Chem. Commun. 1992, 217. (c) Iido, H.; Yuasa, Y.; Kibayashi, C.; Iitaka, Y. J. Chem. Soc. Dalton Trans. 1981, 2212. (d) Jones, D.; Roberts, A.; Cavell, K.; Keim, W.; Englert, U.; Skelton, B. W.; White, A. H. J. Chem. Soc. Dalton Trans. 1998, 255.
10. (a)Strauch, J.; Warren, T. H.; Erker, G.; Fröhlich, R.; Saarenketo, P. Inorg. Chim. Acta. 2000, 300, 810. (b) Matilainen, L.; Klinga, M.; Leskelä, M. J. Chem. Soc. Dalton Trans. 1996, 219. (c) García-Raso, A.; Fiol, J. J.; López-Zafra, A.; Mara, I.; Eapinosa, E.; Molins, E. Polyhedron. 2000, 19, 673. (d) Darensbourg, D. J.; Rainey, P.; Yarbrough, J. Inorg. Chem. 2001, 40, 986. (e) Chisholm, M. H.; Gallucci, J. C.; Zhen, H,; Huffman, J. C. Inorg. Chem. 2001, 40, 5051. (f) Dubé, T.; Gambarotta, S.; Yap, G. Organometallics 1998, 17, 3967.
11. Robert H. C. The Organmetallic Chemistry of the Transition Metals pp.211.
12. Korolev A. V.; Ihara E.; Guzei I. A.; Young V. G.; Jordan, R. F. J. Am. Chem. Soc. 2001, 123, 8291.
13. Kronenthal, R. L. “Polymers in Medicine and Surgery,” in “Polym. Sci. and Technol.,”ed by Kronenthal, R. L. Oser, Z. and Martin, E. Pleunm Press, New York (1975), Vol. 8.
14. Inoue, S. Chem. Lett., 1987, 991.
15. Fujisato. T.; Ikada Y. Macromol. Symp. 1996. 103. 73.
16. (a) Brendan, J.; O’Keefe; Laurie, E.; Breyfogle; William, B. T. J. Am. Chem. Soc. 2002, 124, 4384. (b) Willem, M. S.; Feijen, J. Macromolecules 1996, 29, 6132.
17. (a) Ko, B. T.; Lin, C. C. Macromolecules 1999, 32, 8296.
18. Nozaki, K.; Nakano, K.; Hiyama, T. J. Am. Chem. Soc. 1999, 121; 11008.
19. (a) SonBinh, T. N. Organic Letters, 2001, 3, 2391. (b) Bäckvall J. E., J. Org. Chem. 2002, 105, 652. (c) Liu Y. C., Ko B. T., Huang B. H., Lin C. C. Organometallics 2002, 21, 2066.
20. (a) Trocha, J., Henbest H. B., Chem. Commun. 1967, 545. (b) Henbest H. B., Proc. Chem. Soc. 1964, 361.
21. (a) Herz, W. and Dittmer, K., J. Am. Chem. Soc. 1947, 69, 1698. (b) Kim, H. and Elsenbaumer, R. L., Tetrahedron Lett. 1998, 39, 1087. (c) Huang, J. —H.; Kuo, P. —C.; Lee, G. —H. and Peng, S. —M., J. Chin. Chem. Soc. 2000, 47, 1191. (d) Huang, J. —H.; Chi, L.-S.; Huang, F. —M.; Kuo, P. —C.; Zhou, C. —C.; Lee, G. —H. and Peng, S. —M., J. Chin. Chem. Soc. 2000, 47, 895. (e) Huang, J. —H.; Chi, L. —S.; Yu, R. —C.; Jiang, G. J.; Yang, W. T.; Lee, G. —H. and Peng, S. —M., Organometallics 2001, 20, 5788.(f) Huang, J. —H.; Chen, H. —J.; Chang, J. —C.; Zhou, C. —C.; Lee, G. —H. and Peng, S. —M., Organometallics 2001, 20, 2647. (g) Chang, J. —C.; Hung, C. H. and Huang, J. —H., Organometallics 2001, 20, 4445.
22. Guérin, F.; McConville, D. H.; Payne, N. C. Organometallics 1996, 15, 5085.
23. Guérin, F.; McConville, D. H.; Vittal, J. J., Organometallics 1996, 15, 5586.
24. Atwood, D. A.; Jegier, J. A.; Liu, S.; Rutherford, D.; Wei, P.; Tucker, R. C. Organometallics 1999, 18, 976.
25. Lewinski, J.; Gos, P.; Kopec, T.; Lipkowski, J.; Luboradzki, R. Inorg. Chem. Comm. 1999, 2, 374.
26. Similar phenomena have been seen, for example:Coles, M. P.; Swenson, D. C.; Jordan, R. F., Organometallics 1997, 16, 5183.
27. Keizer, T. S.; Parkin, S.; Patrick, B.; Atwood, D. A. Organometallics 2000, 19, 4416.
28. Reijer, C. J.; Wörle, M.; Pregosin, P. S. Organometallics 2000, 19, 309.
29. (a) Zhou, X. G.; Zhang, L. B.; Zhu, M.; Cai, R. F.; Weng, L. H. Organometallics 2001, 20, 5700. (b) Shen, Q,; Mao, L.; Xue, M. Organometallics 1997, 16, 3711. (c) Shen, Q,; Li, H.; Yao, C.; Yao, Y.; Zhang, L.; Yu, K. Organometallics 2001, 20, 3070.
30. (a) Booij, M.; Sinnema, J. C. M.; Meetsma, A.; van Bolhuis, F.; Teuben, J. H. Organometallics 1988, 7, 1029. (b) Etkin, N.; Hoskin, A. J.; Stephan, D. W. J. Am. Chem. Soc. 1997, 119, 11420. (c) Khan, K.; Raston, C. L. Organometallics 1997, 16, 3252. (d) Murahashi, S.-I.; Takaya, H. Acc. Chem. Res. 2000, 33, 225. (e) Tilley, T. D. Acc. Chem.Res. 1993, 26, 22.
31. (a) Bensiek, S.; Bangel, M.; Neumann, B.; Stammler, H.-G.; Jutzi, P. Organometallics 2000, 19, 1292. (b) Wehmschulte, R. J.; Power, P. P. Inorg. Chem. 1996, 35, 3262.
32. (a) Isom, H. S.; Cowley, A. H.; Decken, A.; Sissingh, F.; Corbelin, S.; Lagow, R. J. Organometallics 1995, 14, 2400. (b) Klein, C.; No¨th, H.; Tacke, M.; Thomann, M. Angew. Chem., Int. Ed. Engl. 1993, 32, 886.
33. (a) Zheng, W.; Roesky, H. W.; Noltemeyer, M. Organometallics 2001, 20, 1033. (b) Fooken, U.; Khan, M. A.; Wehmschulte, R. J. Inorg. Chem. 2001, 40, 1316.
34. Contreras, L.; Cowley, A. H.; Gabbaý¨, F. P.; Jones, R. A.; Carrano, C. J.; Bond, M. R. J. Organomet. Chem. 1995, 489, C1.
35. (a) Contreras, L.; Cowley, A. H.; Gabbaï, F. P.; Jones, R. A.; Carrano, C. J.; Bond, M. R. J. Organomet. Chem. 1995, 489, C1  C3. (b) Bensiek, S.; Bangel, M.; Neumann, B.; Stammler, H. —G.; Jutzi, P. Organometallics 2000, 19, 1292. (c) Jones, C.; Koutsantonis, G. A.; Raston, C. L. Polyhedron 1993, 12, 1829.
36. Zheng, W.; Mösch-Zanetti, N. C.; Roesky, H. W.; Hewitt, M.; Cimpoesu, F.; Schneider, T. R.; Stasch, A.; Prust, J. Angew. Chem. Int. Ed. 2000, 39, 3099.
37. Atwood, D. A.; Hill, M. S.; Jegier, J. A.; Rutherford, D., Organometallics 1997, 16, 2659.
38. Geroge&Odian (1981). Principles of Polymerization.New York:Wiley.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 21、許功明,〈原住民藝術與現代社會─變遷社會中的排灣族群藝術〉,文星,1988年4月。
2. 34、傅君,〈台灣原住民族群的文化及傳統藝術傳承〉,社教雙月刊75期,1996年10月。
3. 42、劉其偉,〈印度與中國的古代琉璃珠〉,藝術家,34:3=202,1992年3月。
4. 31、陳奇祿,〈台灣原住民的文化和藝術(下)〉,國立歷史博物館館刊,7:8,1997年11月。
5. 31、陳奇祿,〈台灣原住民的文化和藝術(下)〉,國立歷史博物館館刊,7:8,1997年11月。
6. 27、許功明,〈原住民的文化產業與社區發展-從博物館功能談起〉,國立自然科學博物館:博物館學季刊,10:1,1996年1月。
7. 27、許功明,〈原住民的文化產業與社區發展-從博物館功能談起〉,國立自然科學博物館:博物館學季刊,10:1,1996年1月。
8. 42、劉其偉,〈印度與中國的古代琉璃珠〉,藝術家,34:3=202,1992年3月。
9. 41、劉其偉,〈古埃及、敘利亞及歐洲的琉璃珠〉,藝術家,34:2=201,1992年2月。
10. 41、劉其偉,〈古埃及、敘利亞及歐洲的琉璃珠〉,藝術家,34:2=201,1992年2月。
11. 21、許功明,〈原住民藝術與現代社會─變遷社會中的排灣族群藝術〉,文星,1988年4月。
12. 26、許功明,〈「原始藝術」與「原始主義」〉,現代美術 60,台北,1995年6月。
13. 26、許功明,〈「原始藝術」與「原始主義」〉,現代美術 60,台北,1995年6月。
14. 25、許功明,〈台灣原住民與人類學家-原住民與博物館〉,山海文化雙月刊,第6期,1994年9月。
15. 25、許功明,〈台灣原住民與人類學家-原住民與博物館〉,山海文化雙月刊,第6期,1994年9月。